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5.1 Introduction

Many different types of voltage-dependent ion channels have been identified and are
responsible for a rich repertoire of electrical behavior essential for neuronal function
(Llinds, 1988). Modeling voltage-dependent ion channels is crucial for assessing their
numerous roles in the genesis of the complex intrinsic properties of central neurons,
as well as how such neurons integrate synaptic inputs with intrinsic excitability to
generate spike output. The seminal work of Hodgkin, Huxley, Katz, and others sev-
eral decades ago still constitutes the basis of today’s models. The first accurate model
of membrane excitability was introduced by Hodgkin and Huxley (1952) and was
based on relatively simple biophysical mechanisms underlying the Na* and K™ con-
ductances that generate action potentials in the giant axon of the squid. This model
reproduced well the behavior of the recorded currents, and its parameters are easy to
determine from experimental data. This explains why Hodgkin-Huxley models are
still widely used today, almost sixty years later.

The postulate of the Hodgkin-Huxley model was that membrane currents result
from the assembly of gating particles freely moving in the membrane. The molecular
components responsible for jonic permeabilities were later identified as being trans-
membrane protein complexes containing a pore specifically permeable to one or sev-
eral ions (reviewed in Hille, 2001). These ion channels can have their permeability
modulated by various factors, such as the voltage or the binding of a ligand. The sen-
sitivity of some ion channels to voltage is a fundamental property that constitutes the
core mechanism underlying the electrical excitability of membranes and is still today
an important matter of investigation (for a review, see Armstrong and Hille, 1998).
In particular, the Hodgkin-Huxley model was cast in a formalism more compatible
with statistical physics and thermodynamics (Tsien and Noble, 1969; T. L. Hill and
Chen, 1972; Stevens, 1978), which we call here thermodynamic models.

Single-channel recording techniques (reviewed in Sakmann and Neher, 1995) pro-
vided significant advances in our understanding of the biophysical properties of ion
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channels. Single-channel recordings have shown that ion channels display rapid and
stochastic transitions between conducting and nonconducting states. It is now known
that conformational changes of the channel protein give rise to opening and closing
of the channel. Conformational changes in ion channels can be described by state
diagrams analogous to the conformational changes underlying the action of enzymes
(chapter 3, section 2). Markov models are based on such transition diagrams and
have been used for modeling various types of ionic currents based on single-channel
recordings (for a complete overview, see Sakmann and Neher, 1993). This lormalism
is more accurate than Hodgkin-Huxley models, but its drawback is the greater diffi-
culty of estimating its parameters from experimental data (Cannon and ID’Ales-
sandro, 2006). However, Markov models can also be used to draw simplified
representations of the current, which capture only the most salient properties of
voltage-dependent or synaptic interactions (Destexhe et al., 1994). Such simplified
models are more adequate for representing currents when simulating networks
involving thousands of cells.

Thus, various formalisms of different levels of complexity have been proposed to
model ionic currents. Which formalism to adopt for modeling a given current
depends on the experimental data available and its accuracy, as well as the desired
level of precision in the behavior of the model. We illustrate these aspects in this
chapter by considering different types of formalisms in modeling such processes as
the action potential and voltage-clamp recordings of the T-type calcium current in
thalamic neurons. For both cases, we show the similarities and differences among
the different models, how well they account for experimental data, and which is the
“minimal” model needed to reproduce clectrophysiological behavior.

5.2 The Hodgkin-Huxley Formalism

The Hodgkin-Huxley Model

In a remarkable series of experiments on the squid giant axon, Hodgkin, Huxley, and
colleagues determined that ionic conductances can be activated or inactivated
according to the membrane potential. They used the technique of a voltage clamp
to record the ionic currents generated at different voltages and thus infer how these
currents can be dynamically modulated by voltage. They characterized the kinetics of
two vollage-dependent currents, the fast sodium current, /,, and the delayed potas-
sium rectifier, [y, mediated by Na®™ and K7 ions, respectively. A mathematical
model was necessary to establish that the identified kinetic properties of voltage de-
pendence were sufficient to explain the genesis of action potentials. The model intro-
duced by Hedgkin and Huxley (1952) incorporated the results of their voltage-clamp
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experiments and successfully accounted for the main properties of action potentials,
which represented very convincing evidence that their postulated mechanism was
plausible.

The Hodgkin-Huxley model is based on a membrane equation describing three
ionic currents in an isopotential compartment:

C.'il% = _.(J'L(V - EL) - gNd(V)( V- ENa) - QK(V)(V == EK)% (51)
where ¢, is the membrane capacitance; V is the membrane potential; g1, gna, and gg
are the membrane conductances for leak currents, Nat, and K™ currents respec-
tively; and Er, En,, and Ey are their respective reversal potentials, which are given
by the Nernst relation (equation 5.11).

The critical step in the Hodgkin-Huxley model is to specify how the conductances
gna(V) and gg (V) depend on the membrane potential ». Hodgkin and Huxley
hypothesized that ionic currents result from the assembly of several independent gat-
ing particles that must occupy a given position in the membrane to allow the flow of
Na' or K* jons (Hodgkin and Huxley, 1952). Each gating particle can be on either
side of the membrane and bears a net electronic charge such that the membrane po-
tential can switch its position from the inside to the outside or vice versa. The transi-
tion from these two states is therefore voltage dependent, according to the diagram:

(outside) <L’—V) (inside), (5:2)
BulV)

where 2 and f are, respectively, the forward and backward rate constants for the

transitions from the outside to the inside position in the membrane. If m is defined

as the fraction of particles in the inside position, and (1 — m) as the fraction outside,

one obtains the first-order kinetic equation:

dm

- O (V1 —m) — B, (¥ )m. (5.3)

Assuming that particles must occupy the inside position to conduct ions, then the
conductance must be proportional to some function of m. In the case of the squid
giant axon, Hodgkin and Huxley (1952) found that the nonlinear behavior of the
Na™ and K currents, their delayed activation, and their sigmoidal rising phase
were best fit by assuming that the conductance is proportional to the product of sev-
eral of such variables:

INe = ;}Nam}‘h (5.4)
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gK :gKn4= (55)

where gy, and gy are the maximal values of the conductances, while m, /i, and n
represent the fraction of three different types of gating particles in the inside of the
membrane. This equation allowed them to accurately fit the voltage-clamp data
of the currents. Their interpretation is that the assembly of three gating particles of
type m and one of type /) is required for Na™ ions to flow through the membrane,
while the assembly of four gating particles of type # is necessary for the flow of K+
ions. These particles operate independently of each other, leading to the m*h, and
n* forms.

Long after the work of Hodgkin and Huxley, when it was established that ionic
currents are mediated by the opening and closing of ion channels, the gating particles
were reinterpreted as gates inside the pore of the channel. Thus, the reinterpretation
of Hodgkin and Huxley’s hypothesis was that the pore of the channel is controlled by
four internal gates, that these gates operate independently of cach other, and that all
four gates must be open in order for the channel to conduct ions.

The rate constants o V) and (V") of m and » are such that depolarization pro-
motes opening the gate, a process called activation. On the other hand, the rate con-
stants of /1 are such that depolarization promotes closing of the gate (and thercfore
closing of the entire channel because all gates must be open for the channel to con-
duet ions), a process called inactivation. Thus the experiments of Hodgkin and Huxley
established that three identical activation gates (m’) and a single inactivation gate
(h) are sufficient to explain the Na™ current’s characteristics. The squid axon K cur-
rent does not have inactivation and can be well described by four identical activation
gates (n?).

Taking together all the steps here, one can write the following set of differential
equations, called Hodgkin-Huxley equations (Hodgkin and Huxley, 1952):

y
Chn % — _QL(V - EL) - gNam'Sh( s EN'A) - gK”4( V- EK)
di
=== (V)(1 = m) = B, (V)m
(5.6)
D (VYU =) = B (V)
dt
d
;I: = o, (V)(1 —n) — Br(V)n.

Hodgkin and Huxley (1952) estimated the rate constants («; and ;) by fitting empiri-
cal functions of voltage to the experimental data. These functions are
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These functions were estimated at a temperature of 6 °C (see section 5.7 for tempera-
ture dependence) and the voltage axis has been reversed in polarity (voltage values
were given with respect to the resting membrane potential, V) compared to the orig-
inal study.

The Hodgkin-Huxley model is often written in a form more convenient to fit to
experimental data by rewriting equation (5.3) in the equivalent form:

- o9
where

me (V) = a(V)/[2(V) + B(V)] (59)
Tn(V) = 1/[2(V) + B(V)]. (5.10)

Here, m.,. is the steady-state activation and 1, is the activation time constant of the
Na't current (n.. and 7, represent the same quantities for the K* current). In
the case of &, h,, and 7, are called steady-stale inactivation and iactivation time
constant, respectively. These quantities are important because they can easily be
determined from voltage-clamp experiments. The Boltzmann equation (Hille, 2001;
equation 2.1) is commonly used for for m., (V).

Fitting to Voltage-Clamp Data

We now turn to the problem of how to use the results of voltage-clamp experiments
to build a Hodgkin-Huxley type of model. We discuss these protocols and illustrate
them for another type of current, the low-threshold calcium current, also called
the T-type calcium current, T-current, or Ir. To this end, we use data collected



112 Alain Destexhe and John R. Huguenard

previously (Huguenard and Prince, 1992) using whole-cell patch recordings from
acutely dissociated thalamic relay neurons from the ventrobasal thalamus of young
rats (P8—P13). All recordings correspond to a temperature of 24°C (see Huguenard
and Prince, 1992 for details about those experiments).

Activation

Like Hodgkin-Huxley’s Na® current, the T-current is transient and activates upon
depolarization, but is slower and its voltage range for activation and inactivation
typically occurs around resting membrane potential. To reveal activation properties,
the typical voltage-clamp protocol is to clamp the membrane using a series of voltage
steps from a hyperpolarized level (—100 mV) to various depolarized levels. Such
a protocol reveals an inward current that activates and inactivates in a voltage-
dependent manner (figure 5.1a2); i.e., each process becomes faster with stronger
depolarizations.

Deactivation

Interrupting the activation protocol before inactivation is complete generates tail cur-
rents (figure 5.1al) that reveal the deactivation characteristics of the current. Deacti-
vation is the reversal of the activation process: the /m gating particles revert to a
closed state during membrane hyperpolarization. Because inactivation is relatively
slow (see next), the kinetics of tail currents, which reflect channel closing, at hyper-
polarized membrane potentials are predominately dependent on deactivation, which
is much faster. Deactivation time constants obtained from tail current analysis are
plotted on the left side (i.e., between membrane potentials of —120 to —80 mV) of
the bell-shaped curve in figure 5.1c.

Inactivation

The typical voltage-clamp protocol to reveal steady-state inactivation is to apply a
series of holding potentials for a prolonged period (several seconds) to allow inacti-
vation to obtain steady-state equilibrium. Then a command potential is applied that
activates the current (at —30 mV in this case). This protocol is shown in figure 5.2al
for the T-current. The different current traces obtained contain similar activation but
different levels of inactivation.

Deinactivation

By analogy to deactivation, deinactivation represents the reversal of the inactivation
process: /i particles revert to an open state during membrane hyperpolarization. The
kinetics of deinactivation can be measured by reactivating the current following com-
plete inactivation. This is accomplished by first holding the membrane potential at a
depolarized level (—40 mV here) to inactivate the current, followed by step voltage-
clamp commands to a hyperpolarized value (—90 mV) for variable amounts of time
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Figure 5.1

Voltage-clamp recordings of the T-current in dissociated thalamic relay neurens. (a) Voltage-clamp pro-
tocols for determining deactivation (al), voltage-dependent activation and inactivation rates (a2), and
steady-state activation (a3). Command potentials at various levels were given after the cell was maintained
at a hyperpolarized holding potential, leading to the activation of the current. (b) Steady-state activation
obtained from the tail currents in a3, which were fit to an m?/ template. (¢) Time constants obtained using
a similar procedure. Different symbols correspond to different cells. (Figure medified from Huguenard and
McCormick, 1992, where all details are given.)
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Figure 5.2

Voltage-clamp characterization of T-current inactivation in dissociated thalamic relay neurons. (ua)
Voltage-clamp protocols for inactivation (al) and recovery from inactivation (a2). In Al, the cell was
mallltalnf:d at dlﬂerent holding potentials then stepped to —30 mV to activate the T-current with different
levels of inactivation. In a2, the current was reactivated after being fully inactivated. The full recovery took
about I s (r_ccovery time constant of about 300 ms). (b) Steady-state inactivation calculated by the peak
of currents in al. {c) Inactivation time constants obtained by fitting an m*h template to the data, The re-
covery time constants were obtained by fitting a single exponential to the recovery experiment (dashed line
mn a2). Different symbols correspond to different cells. (Figure modified from Huguenard and McCormick
1992, where all details are given,) ’
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before returning to the initial depolarized level. The second depolarization generates
an inward current whose amplitude is proportional to the amount of recovery from
inactivation. A particular feature of the T-current is that this recovery from inactiva-
tion is very slow (hundreds of millisecond; figure 5.2a2).

Estimating Steady-State Values and Time Constants

Steady-state values and time constants were estimated as follows. First, we assumed
that T-current gating could be approximated by the Hodgkin-Huxley formalism for
sodium channels, with multiple activation gates and a single inactivation gate (equa-
tion 5.4). The optimal number of activation gates was determined by examining dif-
ferences in residuals between the original current traces and curves best-fitted to
various templates (i.e., m>h, m>h, and m*h). This approach originally suggested that
m*h provided the best fit to the data (Coulter et al., 1989). However, later results
obtained under conditions that better isolated the T-current (Huguenard and Prince,
1992) proved that the m>h scheme was more appropriate. Thus the optimal template
for the T-current included two activation gates and one inactivation gate (Hugue-
nard and Prince, 1992).

Next, to measure activation, the influence of inactivation must be as minimal as
possible. We assumed that activation is essentially complete in 10 ms, and that there
1s negligible inactivation (these assumptions were checked by calculating the expected
activation and inactivation at various voltages). We used the amplitude of the tail
current, which reflects the number of channels open at the end of the depolarizing
step, as a measure of activation (m?). The values obtained using this procedure were
very close to those obtained by direct fitting of Hodgkin-Huxley equations to current
traces (Huguenard and Prince, 1992). The advantage of the tail current approach is
that the driving force is the same for all measurements, therefore providing a direct
measure of normalized conductance. This type of procedure leads to estimates of
steady-state activation (figure 5.1b).

Steady-state inactivation was obtained by plotting the peak current amplitude
(obtained at a test potential of —30 mV) as a function of conditioning potential in
figure 5.2b). The current traces from which these values were obtained are shown in
figure 5.2al).

The time constants (figures 5.1c¢ and 5.2¢) were estimated by fitting the full expres-
sion of the current (from equation 5.12) to the current traces (figure 5.1a2), while
allowing m and / to evolve as a function of time according to equation (5.3) (see the
methods section in Huguenard and McCormick, 1992). Once the steady-state and
time constant values are obtained, one must fit either the empirical functions of volt-
age as done by Hodgkin and Huxley (1952) or by using predefined templates as pre-
dicted by theoretical arguments (see section 5.7).
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5.3 Implementation

Nernst Equation

.In the original Hodgkin-Huxley model, it was assumed that the currents are ohmic,
i.e., they vary lincarly as a function of voltage and conductance. In such a case, the
reversal potential is given by the Nernst equation. For example, for K© ions:

_RT . [K],
E = In (5.11)

{

where R = 8.31 J-K~'-mol ! is the gas constant, T is the absolute temperature
in kelvins, z is the valence of the jon (z =1 for K~ ions, z=—1 for CI™ ions,
etc.), F = 96,489 C-mol~! is the Faraday constant, and [K], and [K], are the
conc)entrations of K+ ions outside and inside the membrane, respectively (see chap-
ter 3).

Goldman-Hodgkin-Katz Equation

While many ionic currents are ohmic, some show clear deviations from ohmic be-
havior, which appears as a deviation from linearity in the I-V representation of
the current. This deviation, also called rectification, may be due to diverse factors
such as very high ionic concentration gradients across the membrane. This is the;
case for calcium currents in central neurons; the internal and external Ca’* concen-
trations differ by about four orders of magnitude, and as the ion channels open or
close, the membrane never reaches equilibrium (which would be given by the Nernst
equation). In such far-from-equilibrium situations, one must use a different for-
malism. The simplest of such nonlinear models is the constant-field equation, also

called Goldman-Hodgkin-Katz equation (see details in Hille, 2001). The current is
given by

It = Peam*hG(V, Ca,., Cay), (5.12)

where P, (in centimeters per second) is the maximum permeability of the membrane
to Ca2* jons (the permeability here is Pc, m*h, the product of maximum permeabil-
ity and the fraction of channels in an open state), and G(V, Ca,, Ca;) is a nonlinear
function of voltage and ionic concentrations:

Ca; — Ca, exp(—zFV /RT)

G(V, Cay, Cai) = 2 F*V /[RT —— exp(—zFV/RT)

(5.13)

where z = 2 is the valence of calcium ions. Ca; and Ca, are the intracellular and
extracellular Ca2* concentrations (in molar concentrations), respectively.
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54 Thermodynamic Models

In the Hodgkin-Huxley model, the rate constants a(¥) and (V) were fit to the ex-
perimental data by using empirical functions of voltage. An alternative approach is
to deduce the exact functional form of the voltage dependence of the rate constants
from thermodynamics. These thermodynamic models (Tsien and Noble, 1969: T. L.
Hill and Chen, 1972; Stevens, 1978) provide a plausible physical basis for constrain-
ing and parameterizing the voltage dependence of rate constants, which are then used
to fit voltage-clamp experiments.

In thermodynamic models, the transition between two states of the channel corre-

sponds to a conformational change in the ion channel protein. Consider a transition
between an initial (/) and a final (F) state, with a rate constant () that is voltage
dependent:
i (5.14)
According to the theory of reaction rates (Eyring, 1935; F. H. Johnson et al., 1974),
the rate of the transition depends exponentially on the free-encrgy barrier between
the two states:

V) = roe SCWVRT, (5.15)
where ro is a constant and AG(V) is the free-energy barrier, which can be written as

AG(V) = G (V) = Go(V), (5.16)

where G*(V) is the free energy of an intermediate state (activated complex), and
Go( V) is the free energy of the initial state, as illustrated in figure 5.3. The relative
values of the free energy of the initial and final states (G and G) determine the equi-
librium distribution between these states, but the kinetics of the transition depend on
the size of the frec-energy barrier AG(V). Systems with a smaller energy barrier
(figure 5.3, dashed line) correspond to faster kinetics because a larger proportion of
molecules will have the energy required to form the activated complex and make the
transition.

In ion channels, these different states correspond to different conformations of the
ion channel protein. How the transition rates between these conformational states
depend on membrane potential is given by the voltage dependence of the free-energy
barrier, which is in general difficult to evaluate. The effect of the electrical field on a
protein will depend on the number and position of its charged amino acids, which
will result in both linear and nonlinear components in the free energy. Without
assumptions about the underlying molecular structure, the free energy of a given
state i can be written as a Taylor series expansion of the form:
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Schematic representation of the free-energy profile of conformational changes in ion channels. The dia-
gram represents the free energy of different states involved in a transition: the initial state, activated com-
plex, and final state. The equilibrium distribution between initial and final states depends on the relative
value of their free energy (Gy and G)). The rate of the transition will be governed by the frec-energy barrier
AG, which is the [ree-energy difference between the activated complex and the initial state. If the energy
barrier is smaller (dashed line), the kinetics of the reaction is faster because a larger proportion of ion chan-
nels will have the energy required to make the transition. (Figure modified from Destexhe and Huguenard,
2000.)

GV)=A;+BV+CV>+... (5.17)

where 4;. B;, C;,. .. are constants that are specific for each conformational state. The
constant A; corresponds to the free energy that is independent of the electrical field;
the linear term B; )" corresponds to the interaction between an electrical field with
isolated charges and rigid dipoles (Tsien and Noble, 1969; T. L. Hill and Chen,
1972; Stevens, 1978; Andersen and Koeppe, 1992). For example, linear terms in V'
will result if the conformations differ in their net number of charges, or if the confor-
mational change is accompanied by the translation of a freely moving charge inside
the structure of the channel (T. L. Hill and Chen, 1972; Hille, 2001). Nonlinear terms
result from such effects as electronic polarization and pressure induced by ¥ (T. L.
Hill and Chen, 1972; Stevens, 1978; Andersen and Koeppe, 1992) or from mechani-
cal constraints associated with the movement of charges that are due to the structure
of the ion channel protein (Destexhe and Huguenard, 2000).

Thus, each conformational state of the ion channel protein will be associated with
a given distribution of charges and will therefore be characterized by a given set of
coefficients in equation (5.17). This is also true for the activated state, which is a par-
ticular case of conformation. Applying equations (5.15)~(5.17), the rate constant
becomes
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—[(4*+B* V24— (Ao Bo W+ Co V2 4-))/RT
r(V):r(]e [(A*+B"¥+C Fo)=(Apt+Bo ¥+ Cy )N/

_ rDe*((HrbV+c'V3+---)/RT7 (5.18)
where « = A" — Ay.h = B* — By, c = C* — (Cy,... represent differences between the
linear and nonlinear components of the free energy of the initial and activated states
(according to equation 5.17).

Consider the particular case of a reversible open-closed transition

V)
C=0, (5.19)
A
where C and O are, respectively, the closed and open states, and « and ff are the for-
ward and backward rate constants. Applying equation (5.18) to forward and back-
ward reactions leads to the following general expression for the voltage dependence:

OC( V) = g(og_(“l'fl'?t Ve V24 /RT
(5.20)
B(V) = foe-tos b e T

where ay, a». by, b2, ¢y, ¢2, ... are constants specific to this transition. It is important to
note that in general these parameters are not necessarily interrelated because the
three different conformations implicated here (initial, activated, and final, as in figure
5.3) may have very different distributions of charges, resulting in different coeflicients
in equation (5.17), and thus also resulting in different values for a; ... ¢;. In the fol-
lowing discussion, this general functional form for the voltage dependence of rate
constants is called the nonlinear thermodynamic model (see Destexhe and Huguenard,
2000).

In the “low field limit” (during relatively small transmembrane voltages), the con-
tribution of the higher-order terms may be negligible. Thus, a simple, commonly used
voltage dependence results from the first-order approximation of equation (5.20) and
takes the form:

a(V) = aoe—(uu—f;l V)/RT
(5.21)
BV = e~ (ath: V)/RT

In the following discussion, this form with a simple exponential voltage dependence
of the rate constants will be called the linear thermodynamic model.

A further simplification is to consider that the conformational change consists of
the movement of a gating particle with a charge ¢ (Hodgkin and Huxley, 1952; see
also Borg-Graham, 1991). The forward and backward rate constants then become
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(V) = age 14V /RT

(5.22)
BV) = poel!=PHFVIRT,

where 7 is the relative position of the energy barrier in the membrane (between zero
and one). The constants «) and f, can be equated to a fixed constant 4 by introduc-
ing the half-activation voltage Vy, leading to

a(V) = Ae 19V =Vu)/RT

(5.23)
ﬁ( V) = Ae(f—}')qF(V— V;;)/RT'

This form was introduced by Borg-Graham (1991) for modeling the gating of ion
channels. Its parameters are convenient for fitting experimental data: V' and ¢ affect
the steady-state activation and inactivation curves whereas 4 and y only affect the
time constant, with no effect on steady-state relations.

The drawback of models in which the rate functions are simple exponentials of
voltage is that these functions can reach unrealistically high values, which leads to
very small time constants and possibly aberrant behavior. A possible way to solve
this problem is to force an artificial saturation of the rate constants (Willms et al.,
1999) or impose a minimum value on the time constant (Borg-Graham, 1991).

Another possibility, physically more plausible, is not to limit the approximation of
equation (5.20) to linear terms, but include higher-order terms in the voltage depen-
dence of the free energy (Destexhe and Huguenard, 2000). For example, the qua-
dratic expansion of equation (5.20) can be written as

a(V) = AoV =Vu)+e (V=vy)*/RT

5.24
BV) = Ael:V~Va)reav =i R o
and similarly, its cubic expansion;
OC(V) = Ae OV =Vi)tar (V=) vd (V=v) )/ RT

(5.25)

BV = Aelb2(V—Vi)te(V Vi) sds(V Vi) /RT

where A, by ...d, are constants as defined earlier.

In addition to the effect of voltage on isolated charges or dipoles, described in
equation (5.21), these forms account for more sophisticated effects, such as the defor-
mation of the protein by the electrical field (T. L. Hill and Chen, 1972; Stevens,
1978) or mechanical constraints on charge movement (Destexhe and Huguenard,
2000). It also makes it possible for the model to capture more complicated depen-
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dence on voltage than the simple exponential functions of equation (5.21), which
may result in more realistic behavior (see section 5.7).

Finally, another way to impose a minimal value on the time constant is to consider
that the gate operates via two successive transitions:

x(V) ki
V) ke

where C) and C; are two distinct closed states of the gate. The second transition is
not dependent on voltage and therefore acts as a rate-limiting factor when o and
# are large compared with & and ky. In this case, the system will be governed
essentially by & and ka, which therefore impose a limit on the rate of opening and
closing of the gate. On the other hand, when & and f§ are small compared with k,
and ks, the system will be dominated by the first transition, while the two states
(3 and O will be in rapid quasi-equilibrium. Although this system apparently solves
the problem of having a minimal time constant while still conserving the voltage
dependence of the gate, it is nevertheless still unrealistic that the simple exponential
representation for o« and £ permits the first transition to occur arbitrarily fast at some
voltages.

Reaction schemes involving multiple states, such as equation (5.26), are reminis-
cent of another class of models, called Markov models, which are described in more
detail in the next section.

5.5 Markov Models

As outlined earlier, the formalism introduced by Hodgkin and Huxley (1952) was re-
markably forward looking and closely reproduced the behavior of MAacroscopic cur-
rents. However, Hodgkin-Huxley models are not exact and in fact rest on several
approximations, and some of their features are inconsistent with experiments. Mea-
surements on Na™ channels have shown that activation and inactivation must neces-
sarily be coupled (Armstrong, 1981; Aldrich et al., 1983; Bezanilla, 1985), which is in
contrast to the independence of these processes in the Hodgkin-Huxley model. Na*
channels may also show an inactivation that is not voltage dependent, as in the
Hodgkin-Huxley model, but state dependent (Aldrich et al., 1983). Although the
latter can be modeled with modified Hodgkin-Huxley kinetics (Marom and Abbott,
1994), these phenomena are best described using Markov models, a formalism more
appropriate for describing single channels.

Markov models represent the gating of a channel as occurring through a series of
conformational changes of the ion channel protein and assume that the transition
probability between conformational states depends only on the present state. The
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sequence of conformations involved in this process can be described by state dia-
grams of the form:

SigShe a8, (5.27)

where S; ....S, represents distinct conformational states of the ion channel. Defining
P(S, 1) as the probability of being in a state S; at time ¢ and P(S; — S;) as the tran-
sition probability from state S; to state S; (j = 1...n), according to

& P(S;—S;)

i T—— 5,

s (5.28)

leads to the following equation for the time evolution of P(S;, 0):

dP(Sf, f) n "

—= ; P(S;, 0)P(S; — ;) — Zl P(Si, )P(S; — S)). (5.29)
= =

This equation is called the master equation (see e.g., Stevens, 1978; Colquhoun and
Hawkes, 1981). The left term represents the “source’” contribution of all transitions
e‘ntering state S;, and the right term represents the “sink™ contribution of all transi-
tions leaving state S;. In this equation, the time evolution depends only on the pres-
ent state of the system and is defined entirely by knowledge of the set of transition
probabilities (Markovian system). In the limit of large numbers of identical channels
the quantities given in the master equation can be replaced by their macroscopic ini
Ferpretation. The probability of being in a state S; becomes the fraction of channels
in state S;, noted s;, and the transition probabilities from state S; to state S; become
the rate constants, ry, of the reactions '
Fig

i

In this case, one can rewrite the master equation as

dSI N i
E = ZSJ,‘I'J,‘,‘ = J','I'{',.‘, (531)
F=1 |

which is a conventional kinetic equation for the various states of the system. Note
that the rate constants can be voltage dependent and can be expressed as earlier
(e.g.. equation 5.20).

Slqchastic Markov models (as in equation 5.29) are adequate to describe the sto-
chastlc behavior of ion channels as recorded using single-channel recording tech-
niques (see Sakmann and Neher, 1995). In other cases, where a larger area of
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membrane is recorded and large numbers of ion channels are involved, the macro-
scopic currents are nearly continuous and are more adequately described by conven-
tional kinetic equations, as in equation (5.31) (see Johnston and Wu, 1995). In the
following discussion, only systems of the latter type will be considered.

Note that Markov models are more general than the Hodgkin-Huxley formalism
and include it as a subclass. Any Hodgkin-Huxley model can be written as a Markov
scheme (while the opposite is not true). For example, the Markov model correspond-
ing to the Hodgkin-Huxley sodium channel is (Fitzhugh, 1965):

30, 21{:1 D
Cs y & —3 )
B 28, 38,0
7 H B o l By 2 Hm % H By (5.32)
3t 2 Oy
5 i L, —— L
B 28, 38,

Here, the different states represent the channel with the inactivation gate in the open
state (top) or closed state (bottom) and (from left to right) three, two, one, or none of
the activation gates closed. To be equivalent to the m? formulation, the rates must
have the 3:2:1 ratio in the forward direction and the 1:2:3 ratio in the backward di-
rection. Only the O state is conducting.

The squid delayed rectifier potassium current modeled by Hodgkin and Huxley
with four activation gates and no inactivation can be treated analogously (Fitzhugh,
1965; Armstrong 1969), giving

4 32, 2,

GGt (5.33)
Bu o 2 3 9

5.6 Titting Models to Experimental Data

We now use some of the formalisms reviewed here and compare them in similar sit-
uations. Two situations are considered successively. The first is the voltage-clamp be-
havior of the sodium channel and the genesis of action potentials, and the second
consists of the characteristics of the T-type calcium current and the genesis of bursts
of action potentials by the T-current in thalamic neurons.

Models of Na+ and K+ Currents Underlying Action Potentials

We compare here the Hodgkin-Huxley model with two Markov models of Na™
channels. A nine-state Markov model was proposed by Vandenberg and Bezanilla

(1991):
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o s [ -~

LI = 5 e L.
ra i
This particular nine-state model was selected to fit not only the measurements of
macroscopic ionic currents available to Hodgkin and Huxley, but also recordings of
single-channel events and measurements of currents resulting directly from the move-
ment of charge during conformational changes of the protein (so-called gating cur-
rents; see Hille, 2001). The voltage dependence of the transition rates was assumed
to be a simple exponential function of voltage (equation 5.21).

To complement the sodium channel model of Vandenberg and Bezanilla, we also
examined the six-state scheme for the squid delayed rectifier channel used by Perozo
and Bezanilla (1990):

4l 3

CalistGe Gelico (5.35)

2 Fq Fy Fa

where again rates were described by a simple exponential function of voltage (equa-
tion 5.21).

The third class of model considered here consists of simplified Markov models of
Na® and K* currents. The model for the Na™ channel was chosen to have the fewest
possible number of states (three) and transitions (four) while still being capable of
reproducing the essential behavior of the more complex models. The form of the
state diagram was based on a looped three-state scheme in which some transitions
were eliminated, giving an irreversible loop (Bush and Sejnowski, 1991; Destexhe et
al., 1994):

r(¥)

C ﬁv (@]
N (5.36)
1

This model incorporated voltage-dependent opening, closing, and recovery from in-
activation, while inactivation was voltage independent. For simplicity, neither open-
ing from the inactivated state nor inactivation from the closed state was permitted.
Although there is clear evidence for occurrence of the latter (Horn et al., 1981), it
was unnecessary under the conditions of the present simulations. Rate constants
were described by
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a;

1 exp[—(V —¢;)/b]

(V) , (5.37)
with ¢; = ¢» to yield a model consisting of nine total parameters (Destexhe et al.,
1994).
The simplified K* channel model consisted in a single open or conducting state O,
and a single closed state C:
i'](V)
C—0. (5.38)
(V)
Here, the rates r{ (V) and r>(¥) had a sigmoidal voltage dependence similar to that
in equation (5.37) (see details in Destexhe et al., 1994).

Na* Currents in a Voltage Clamp

The different types of models reviewed here are characterized by different complex-
ity, ranging from a two-state representation (equation 5.38) to transition diagrams
involving many states (equation 5.34). The two-state description is adequate for the
behavior of some channels (see Labarca et al., 1985; Yamada et al, 1998; Borg-
Graham, 1991; Destexhe et al., 1994; Destexhe et al., 1998a), but for most channels
more complex models must be considered. To illustrate this, we compared three dif-
ferent models of the fast sodium channel underlying action potentials (figures 5.4 and
5.5).

The responses of the three sodium channel models were compared during a
voltage-clamp step from resting potential (=75 mV) to a depolarized level of —20
mV (figure 5.4). For all three models, the closed states were favored at hyperpo-
larized potentials. Upon depolarization, forward (opening) rates sharply increased
whereas closing (backward) rates decreased, causing a migration of channels in the
forward direction toward the open state. The three closed states in the Hodgkin-
Huxley model and the five closed states in the Vandenberg-Bezanilla model gave
rise to the characteristic delayed activation and sigmoidal shape of the rising phase
of the sodium current (figure 5.4d). In contrast, the simple model, with a single closed
state, produced a first-order exponential response to the voltage step and was there-
fore not sigmoidal.

These models generate different predictions about single-channel behavior. The
steady-state behavior of the Hodgkin-Huxley model of the macroscopic sodium cur-
rent is remarkably similar to that of the Vandenberg-Bezanilla (1991) model, but
there are important differences in the relationship between activation and inacti-
vation. First, as mentioned earlier, in the Hodgkin-Huxley model, activation and
inactivation are kinetically independent. This independence has been shown to be
untenable on the basis of gating and ion current measurements in the squid giant
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Figure 5.4

Three kinetic models of a squid axon sodium channel produce qualitatively similar conductance time
courses. A voltage-clamp step from rest, J' = =75 mV, to V' = —20 mV was simulated. The fraction of
chan:}els in the open state (O, thick solid line), closed states (C, thick dashed lines). and inactivated states
(7, thick dotted _lmcs) are shown for the Hodgkin-Huxley model (1952), a detailed Markov model (Vanden-
berg and Bezanilla, 1991), and a simple Markov model (Destexhe et al., 1994). (a) Hodgkin-Huxley model
of the sodium channel (equation 5.32). The activation (m) and inactivation (/) gates were deduced from
other states and are indicated by thin lines. (b) Markov model of Vandenberg and Bezanilla (1991; equa-
tion 5.34). Individual closed and inactivated states are shown (thin lines), as well as the sum of :]II ﬁ\(fe
closed states (C), the sum of all three inactivated states (1) and the open state (O). (c) Simplfﬁed thrc;c—stalc
Markov model (Destexhe et al., 1994; equation 5.36). (d) Comparison of the time course of open channels
for the_three models on a faster time scale shows differences immediately following the voltage step Tl]u::
Hodgkin-Huxley (H-H) and Vandenberg-Bezanilla (detailed) models give smooth,cmultiexponemiall-y ris-
ing phases, while the three-state Markov model (simple) gives a single exponential rise with a discontinuity

ir} the)slope at the beginning of the pulse. (Figure modified from Destexhe et al., 1994, where all details are
given. ' 4
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axon (Armstrong, 1981; Aldrich et al., 1983; Bezanilla, 1985). Consequently, Mar-
kov models that reproduce gating currents, such as the Vandenberg-Bezanilla model
examined here, require schemes with coupled activation and inactivation. Likewise,
in the simple model, activation and inactivation were strongly coupled, owing to the
unidirectional looped scheme (equation 5.36), so that channels were required to open
before inactivating and could not reopen from the inactivated state before closing.

A second difference is that in the Hodgkin-Huxley and Vandenberg-Bezanilla
models, inactivation rates are slow and activation rates are fast. In the simplified
Markov model, the situation was reversed, with fast inactivation and slow aclivation.
At the macroscopic level modeled here, these two relationships gave rise to similar
time courses for open channels (figure 5.4a—c; see Andersen and Koeppe, 1992).
However, the two classes of models make distinct predictions for single-channel be-
havior. Whereas the Hodgkin-Huxley and Vandenberg-Bezanilla models predict the
latency to the first channel opening to be short and channel open times to be compa-
rable to the time course of the macroscopic current, the simplified Markov model
predicts a large portion of first channel openings to occur after the peak of the mac-
roscopic current and to have open times much shorter than the current’s duration.

Genesis of Action Potentials (Current Clamp)

Despite significant differences in their complexity and formulation, the three models
of the sodium channel all produced comparable action potentials and repetitive firing
when combined with appropriate delayed-rectifier potassium channel models (figure
5.5). These simulations thus seem to perform similarly for fitting the macroscopic be-
havior of Na®™ and K™ currents.

However, these three models generated clear differences when compared in a volt-
age clamp (figure 5.4) and still larger differences would be expected at the single-
channel level. Thus, the choice of model clearly depends on the scope ol the
modeling study. If the detailed behavior of voltage-clamp experiments or single-
channel recordings is to be reproduced, Markov models are certainly the most ap-
propriate representation. However, if the goal is to reproduce the qualitative features
of membrane excitability, action potentials, and repetitive firing, all models seem
equivalent, except that simpler models are faster to compute. Thus in this case, sim-
plified two- or three-state schemes or the Hodgkin-Huxley model would seem most
appropriate.

5.7 Models of the T-Type Calcium Current

The different formalisms reviewed earlier are now applied to the example of voltage-
clamp experiments of the T-type (low threshold) calcium current responsible for
bursting behavior in thalamic neurons (Jahnsen and Llinds, 1984).
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a b

Figure 5.5

Similar action potentials produced using three different kinetic models of squid fast sodium and delayed
rectifying potassium channels. (a) Single action potentials in response to 0.2-ms, 2-nA current pulse are
elicited at similar thresholds and produce similar waveforms using three different pairs of kinetic models:
Hodgkin and Huxley (1952) (dot-dashed line), detailed Markov models (Perozo and Bezanilla, 1990; Van-
denberg and Bezanilla, 1991) (dotted line), and simplified kinetic models (solid line). (b) Repetitive trains
of action potentials elicited in response to sustained current injection (0.2 nA) have slightly different fre-
quencies, Sodium channels were modeled as described in figure 5.4. The detailed Markov potassium chan-
nel model had six states (Perozo and Bezanilla, 1990; equation 5.35) and the simple model of potassium

channel had two states (equation 5.38). (Figure modified from Destexhe et al., 1994, where all details are
given.)

Hodgkin-Huxley Model of the T-Current

The voltage-clamp behavior shown here was first modeled by a Hodgkin-Huxley
type of representation in which rate constants were fit to experimental data using em-
pirical functions of voltage (Huguenard and McCormick, 1992). Owing to the non-
lincar behavior of calcium currents (the internal and external Ca®' concentrations
differ by about four orders of magnitude), they were represented using the constant-
field equation (equation 5.12). The variables m and / in this equation represent,
respectively, the activation and inactivation variables and obey first-order equations
similar to equation (5.8). Their steady-state relations were fit using Boltzmann equa-
tions (figure 5.6a-b, thin solid lines), leading to the following optimal functions:

(V) = 1/(1 + exp[—(V + 57)/6.2])

hoo (V) = 1/(1 +exp[(V +81)/4]).

(5.39)
(5.40)

Similarly, the voltage-dependent time constants were estimated by fitting exponential
functions to the values determined experimentally (figure 5.6c—d, thin solid lines),
leading to the following expression for activation:

+~—
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Figure 5.6

Fitting of different models to the T-current in thalamic relay neurons. In each panel, Ll'!e syml.bols shtgw thcz
voltage-clamp data obtained in several thalamic neurons ‘(sce figures 5.1 and 5.2)_ and the con nlxluou..
curves show the best fits obtained with an empirical Hodgkin-Huxley-type model (thmAsol.;d line), ; 1‘ngal
thermodynamic model (dashed line), and a nonlinear thermodynamic m_odel (thick solid luhe).l(a) i_tei' yl;
state activation (m?). (b) Steady-state inactivation (i,.). (¢) Activation time constant (z). {d) nfac 1vz;n1;c-
time constant (). The leftmost symbols in d (< —80 mV) are the data from the islow recm;:ry Tom B
tivation of the T-current. See the text for the values of the parameters. All functions were fit using a s
plex method. (Figure modified from Destexhe and Huguenard, 2000.)
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(V) =0.612 4+ 1 /(exp[—(V + 132)/16.7] + exp[(V + 16.8)/18.2]) (5.41)
and for inactivation:

(V) = 28 +exp[—(V +22)/10.5] for ¥ >= —8§1 mV

(5.42)
exp((V + 467)/66.6] for ' << —81 mV.

Here two different functions were fit to the time constants 7, obtained from inactiva-
tion protocols (¥ >= —81) or recovery from inactivation (V' < —81).

The temperature dependence of these empirical functions was adjusted according
to the following rule:

v = T2 (5.43)

where Qyq is the experimentally determined change of time constants for a 10-degree
difference in temperature. For the T-current in thalamic neurons, )y was deter-
mined as equal to 5 for 7, and 3 for ;, (Coulter et al., 1989).

The behavior of this model is shown in figure 5.7a. The model accounted well for
all protocols of figures 5.1 and 5.2, with activation and recovery from inactivation
shown in figures 5.7al and a2, respectively. However, in this model, 7, and 7, were
fit using functions of voltage obtained empirically. Similar to the work of Hodgkin
and Huxley (1952), this approach leads to a model that accounts well for the
current-clamp behavior of the T-current in thalamic neurons (McCormick and
Huguenard, 1992: see figure 5.8).

Linear Thermodynamic Model of the T-Current

Another possibility is to deduce the functional form of rate constants from thermo-
dynamic arguments, The first of such models is the linear approximation. Constrain-
ing the fitting using rate constants described by equation (5.21) (figure 5.6, dashed
lines) led to the following optimal expressions:

% = 0.049 exp[d444y, (V + 54.6)/RT) (5.44)
B = 0.049 exp[—444(1 — 3, )(V + 54.6)/RT) (5.45)
;= 0.00148 exp[—559y,(V + 81.9)/RT) (5.46)
By = 0.00148 exp[559(1 — »,)(V + 81.9)/RT], (5.47)

where y,, = 0.90 and y, = 0.25. The steady-state relations and time constants are
obtained similarly to those in equations (5.9-5.10).

This model provided a good fit of the steady-state relations (figure 5.6a-b, dashed
lines), but the fit to time constants was poor (figure 5.6c—d, dashed lines). In particular,
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(Figure modified from Destexhe and Hugucnard 2000.)
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it v_vas not possible to capture the saturation of 7y and 7, to constant values for depo-
lartzed.membrane potentials. This poor fit had catastrophic consequences, as iHIEls
trated in ﬁgure. 5.7b. Owing to the near-zero time constants at depolariz;:c; levels-
the current activated and inactivated too fast and led to peak current amplitude;
that were more than an order of magnitude smaller than the Hodgkin-Huxley model
at tl;l:: same cham‘_lel densities (compare a and b in figure 5.7). We conclude fhat lin-
;:;1;‘ th:r?zjégi?lc models do not provide an acceptable behavior in a voltage clamp
One possibility of resolving this inherent limitation is to add an artificial minimum
value to t}_le time constant (Borg-Graham, 1991), but this possibility was not consid
ered here in order to stay within a physically plausible formalism. Instead. we shov»:
next .that‘ this problem can be solved by including higher-order voltage-t’ie endent
contributions in the free-energy barrier (Destexhe and Huguenard, 2000). p

Nonlinear Thermodynamic Model of the T-Current

Nonlmear thermodynamic models assume that the free-energy barrier depends non-
lmea_rly on voltage (see equation 5.20) and that cach conformational state involved
has its own dependence on voltage, independently of other conformational state
‘(Destexh.e and Huguenard, 2000). The consequence is that the coefﬁcientsca S
in equation (5..20) can take any value independently of each other. Using the%é: noz-
linear expressions to fit the voltage-clamp data of the T-current led to betle£ fits of
T-channel data. The quadratic expansion still provided a poor fit of the time ¢

stants‘, although better than linear fits (not shown). Acceptable fits were éblai d (;“'
a cubic expansion of the rate constants, given by e

2

Dfm(V) == Am exp[bml ( V- Vm) -+ C,,,](V == Vm)z + dml ( e VM)BJ/RT

Bn(V) = A, exp[bnﬁ(V = V) + e (V — Vm)z + dna(V — Vui):;J/RT

(V) = Ap exp=[bia(V = Vi) + en(V = Vi) 4 dy(V — Vi) RT 2

BuV) = A explbia(V = Vi) + epa(V = V) + dip(V — Vi)'/RT.

The best fit of this nonlinear thermodynamic model is shown in figure 5.6 (thick solid
lines) and was obtained with the following parameters: A, = ().053 ms;] VIC‘ S0516
mV, b, = —-260, ¢, =2.20, dny = 0.0052, b, = 04.85, ¢,p0 =2.02 a; 71170 (;36
Ap=0.0017 ms~', ¥}, = —80 mV, by = 163, ¢ = 4.96, a’;,lu: 0.06£ bT; ; -‘438,
¢z = 8.73, diy = —0.057, Figure 5.6 (thick solid lines) shows that thisj mgdel coulci
capture the form of the voltage dependence of the time constants. In particular, it
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could fit the saturating values for the time constants at a depolarized level in a man-
ner similar to the empirical functions used for the Hodgkin-Huxley-type model (fig-
ure 5.6, thin solid lines). Nonlinear expansions of higher order provided better fits,
but the difference was not qualitative (not shown).

Using these rate constants with equation (5.39) produced acceptable voltage-clamp
behavior, as shown in figure 5.7c. All protocols of activation (figure 5.7¢1), deactiva-
tion (not shown), inactivation (not shown), and recovery from inactivation (figure
5.7¢2) showed voltage-dependent behavior similar to that of the experimental data.

Markov Model of the T-Current

To illustrate the Markov representation, we have used a model of the T-current
introduced by Chen and Hess (1990). This model was obtained based on voltage-
clamp recordings and single-channel recordings of the T-current in fibroblasts, and
the following optimal scheme was proposed (Chen and Hess, 1990):

kel (V) k.,
i G, &
ka(V) k.
i, H K K H k. (5.49)
ke (V)
I r— I

Kp(1)

Here, only k,, ky, kr, and kj are voltage dependent, while the other rates are con-
stant. Thus activation occurs through one voltage-dependent step (k.. k,) and one
voltage-independent step (k,, k), the latter being rate limiting if k, and k, reach
high values. Similarly, the inactivation occurs first through a voltage-independent
step (ki k ), followed by a voltage-dependent transition (k. k;) and a voltage-
independent return to the closed state (k,,/k_,).

Fitting the parameters of Markov models to experimental data is in general diffi-
cult (Cannon and D’Alessandro, 2006). It is not possible to obtain an analytical ex-
pression for both time constants and steady-state relations, owing to the too-great
complexity of the model. In general, the activation and inactivation will be described
by multiexponential processes with several time constants, and relating these multiple
time constants to the time constants estimated from experimental data (figures 5.1-
5.2) is not trivial. Rather, the parameters of Markov models are deduced from vari-
ous experimental considerations. It is also possible to directly fit the Markov model
to the original voltage-clamp traces by minimizing the error between the model and
all experimental traces. Although in principle more accurate, this procedure is diffi-
cult to realize in practice because of the complexity of the model (cleven parameters

here).
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The choice of these parameters was guided by the following considerations (Chen
anq Hesls, 1990): (1) The value of k; must be close to the saturating value of the rate
of inactivation at depolarized membrane potentials (figure 5.2¢), and k_; must be
mu_{:h snlnaller to ensure complete inactivation. (2) k. must be close’ to the f_arstest acti-
vatl(l)n time constants at negative potentials (figure 5.1c), while &, must be large (>1
ms™') to be compatible with the short bursts of opening in single-channel recordings
-(Chefl arlld Hess, 1990). (3) The sum k, + k_, determines the rate of recovery from
1n§ct1vat10n at negative membrane potentials. (4) The values of k, and k; are
adjusted to obtain the best fit with activation and inactivation Voltage—ZIamp ref:ord-

ings using a thermodynamic template with a linear de
endence
voltage: p of the free energy on

k = ko exp(gFV
ko exp(qFV /RT), (5.50)

where ¢ = 3.035 is the net charge of a gating particle.

Since this scheme is cyclic, microscopic reversibility requires that the clockwise
product of the rate constants equal the anticlockwise product, which in turn requires

that the voltage dependence of ks and &, be the same as that of k, and k;. The opti-
mal values of the rate constants were (all units are ms™'):

kq = 6.4 explgF(V — s)/RT)
kq = 0.000502 exp[—gF (V — 5)/RT)]

kr = 16 explgF(V — 5)/RT)

ky =2 x 107° exp[—gF(V — 5)/RT]

ko, =3

% T3 (5.51)
ki = 0.036

k=8 x107°

k, = 0.001

k_, = 0.003.

Here, the parameters were adapted to recordings of the T-current in thalamic neu-

rons. An additi.onal parameter, s = —5 mV, was introduced to shift the voltage de-
pendence to adjust the model to the thalamic T-current.
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This model was simulated with the above expressions for rate constants and the
T-current described by the following equation:

IT = Pca[O]G( V, Ca,,, Ca,-), (552)

where [O)] is the fraction of channels in the open state. Simulated voltage-clamp
experiments (figure 5.7d) show that the Chen and Hess model reproduced well the
activation characteristics of the T-current (figure 5.7d1) as well as its slow recovery
from inactivation (figure 5.7d2). However, this model did not quantitatively fit the
T-current of thalamic neurons because it was based on single-channel recordings of
the T-current in fibroblasts, which is different than the “peuronal” T-current (see
analysis in Chen and Hess, 1990; see also Cannon and D’Alessandro, 2006). Obtain-
ing a better Markov representation of the thalamic T-current would require con-
straining the model by single-channel recordings.

Comparison of the Different Models (Current Clamp)

The different models reviewed here for the T-current were compared in a current
clamp. A single-compartment model of the thalamic relay neuron was generated
(same parameters as in Destexhe et al.. 1998b) and contained leak currents and the
T-current according to the following equation:

Cm%iK: _gL(V—EL} _ITa (553)
1

where ¢, = 0.88 pF/em?” is the membrane capacitance, g = 0.038 mS/cm? and
E = —77 mV are the leak conductance and reversal potential, and It is the T-
current as given by equation (5.12). These parameters were obtained by matching
the model to thalamic neurons recorded in vitro (Destexhe et al., 1998b).

Using this model, the genesis of low-threshold spikes (LTSs) was monitored
through return to resting potential after injection of hyperpolarizing currents. The
empirical Hodgkin-Huxley-type model of the T-current generated LTSs in a grossly
all-or-none fashion (figure 5.8a). The lincar thermodynamic model (figure 5.8b) did
not generate LTSs, which is consistent with the very small amplitude of the current
evidenced earlier (figure 5.7b). On the other hand, the nonlinear thermodynamic
model (figure 5.8¢) and the Markov model of the T-current (figure 5.8d) presented a
behavior more consistent with the Hodgkin-Huxley-type model. The peak amplitude
of the LTSs was compared using different models in figure 5.8e. Although the shapes
of the LTSs were not identical, Hodgkin-Huxley and nonlinear thermodynamic mod-
els produced remarkably similar peak amplitudes (filled circles and triangles in figure
5.8¢). We therefore conclude that nonlinear thermodynamic models provide fits of
a quality comparable to empirical Hodgkin-Huxley models, but that their form is
physically more plausible.
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Low-threshold spikes generated by different models of the T-current. Comparison of the same current-
clamp simulation for four different models of the T-current: an empirical Hodgkin-Huxley-type model
(a), a lincar thermodynamic model (b), a nonlinear thermodynamic model (¢), and a Markov model (d).
The simulation consisted in injecting hyperpolarizing current pulses of various amplitudes (—0.025, —0.03,
—0.075. —0.1, =0.125, and —0.15 nA) and of | s duration. At the end of the pulse, the model generated a
low-threshold spike (LTS) upon return to rest. (e} Peak amplitude of low-threshold spikes generated by the
different models of the T-current. All simulations were done with the same single-compariment geometry,
which contained leak currents in addition to the T-current (identical parameters as in Destexhe et al.,
1998). The density of T-channels was identical in all cases (Pe, = 5 % 10°° cm/s) and was in the range of

densities estimated from rat ventrobasal thalamic neurons (Destexhe et al., 1998a). (Figure modified from
Destexhe and Huguenard, 2000.)
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5.8 Conclusions

In this chapter, using concrete examples, we have illustrated several widely used for-
malisms to model voltage-dependent channels, and discussed how to fit the corre-
sponding equations and parameters to experimental data (for a recent review, see
Cannon and D’Alessandro, 2006).

The question of which formalism to choose for modeling voltage-dependent chan-
nels is of course entirely dependent on the type of data available and the goal of the
modeling effort (see also discussion in Bruno et al., 2005). It is clear that a tyvo-state
scheme cannot capture the features of single-channel recordings, which require Mar-
kov models of sufficient complexity to account for the data. On the other hand, even
simplified two- or three-state representations can capture phenomel.m such as action
potentials (Destexhe et al., 1994). For example, il the principal requlre.ment is to gen-
erate action potentials, it is not necessary to include all the complexity .Of the most
sophisticated Markov diagrams of channels, and simplified represent.atlons appear
sufficient. This simplistic approach may be adequate for models involving large-scale
networks of thousands of cells, for which computational efficiency is a more impor-
tant concern than reproducing all the microscopic features of the channels. _

Finally, we would like to point to a number of resources available for modeling

ion channels. The first type consists of databases freely available on the Internet.
The most prominent of modeling databases is the ModelDB c‘iatabase (http://
senselab.med.yale.edu/senselab/ModelDB), which provides a conyderable numbf:r
of program codes of published models, written using many different publically .ava.ll-
able simulation environments. The ChannelDB database (http://www.genesis-sim
.org/hbp/channeldb/ChannelDB.html) provides the user with a large number of ion
channel models stored in simulator-independent NeuroML format. The NeuronDB
database (http://senselab.med.yale.edu/senselab/NeuronDB) also contains useful in-
formation about the gating properties of different types of ion channels. A secon_d
type of resource is dedicated software for fitting ion channel models from experi-
mental data. Some simulation environments, such as NEURON (see the sqftware
appendix), include automated procedures to perform such a ﬁttmg. There exist also
toolboxes and free packages for fitting ion channel models to experimental Fiata, such
as NEUROFIT (http://www.uoguelph.ca/~awillms/neurofit/) for Hodgkin-Huxley
models, or QuB (http://www.qub.buffalo.edu/) for Markov models. ThESfi TeSOUrces
are growing fast, which underlines the need for centralizing all resources in a unified
database for all computational neuroscience research.




