4 Modeling Intracellular Calcium Dynamics

FErik De Schutter

In this chapter we use the methods developed in chapter 3 to model calcium dynam-
ics inside neurons. A wide range of applications are covered, from simple phenom-
enological models used to drive the activation of calcium-gated channels to highly
detailed modeling of events in a spine. Simulating calcium dynamics can be compu-
tationally costly and even for extensively studied cases, important parameters are not
known (Neher, 1998); therefore it is quite important to choose the right level of com-
plexity of model. We only consider the cytoplasmic calcium concentration C; and
keep the extracellular concentration C, constant because changes of the latter are
not thought to be relevant under in vivo conditions. We will first introduce how to
model the different processes affecting the cytoplasmic calcium concentration and
then consider a number of typical modeling cases.

4.1 Calcium Sources and Sinks

The free cytoplasmic calcium concentration C; is the end result of the interaction of
many processes, each of which needs to be described by its own set of equations In a
complete model. Recent reviews of the biochemical properties of these processes can
be found in Sabatini et al. (2001), Augustine et al. (2003), Berridge et al. (2003), and
Hartmann and Konnerth (2003). Neuroscientists should realize that the literature
on modeling calcium dynamics is vast and extends well beyond the neuroscience do-
main, with many interesting contributions from modeling the heart, muscles, and
pancreatic beta cells.

Calcium Influx

Calcium can flow into the cytoplasm from two sources: through membrane channels
or by release from internal stores. The second source is considered later.

Because of the huge calcium gradient across the cell membrane, calcium currents
are strongly rectifying (Hille, 2001). Therefore one should always use the Goldman-



94 Erik De Schutter

Hodgkin-Katz equation (GHK: equations 5.12-5.13 in chapter 5) to compute the
current /¢y, This will be more accurate than a linear ohmic current because, for
example, the calcium current reversal predicted by the Nernst potential is quite
unphysiological.

The change in a concentration that is due to jon entry through a membrane chan-
nel caused by an ion current /¢, (chapter 5) is given by

dCi . [Ca(t)
dr T Ry (1)

where z is the charge of the ion (+2 in the case of calcium), F is the Faraday constant
(96,489 C-mol™!), and v is the volume into which the flux occurs. An important
parameter determining the rise and decay times of concentration changes caused by
calcium currents is the surface-to-volume ratio (Cornelisse et al., 2007). The calcium
influx scales with membrane surface as do the membrane pumps, but the effect of
most removal systems like buffers and diffusion is related to the volume. Structures
with a small volume (high surface-to-volume ratio) like spines and thin dendrites,
will therefore, for the same density of calcium channels, show higher-amplitude
changes that rise and decay faster than structures with high volumes, like a proximal
dendrite,

For voltage-gated channels, usually the complete current is used to compute the
calcium influx, but for many synaptic channels, the current is carried by a mixture
of ions (chapter 6, section 1) and therefore the specific calcium component of the syn-
aptic current is needed. This is most relevant for models that simulate calcium influx
through NMDA and through some AMPA receptor channels (Burnashev, 1998) to
induce synaptic plasticity (Holmes and Levy, 1990). The fractional calcium current,
which expresses the relative charge carried by calcium at a given voltage, is in the
range of 8§-12% for NMDA channels (Burnashev, 1998; Sobezyk and Svoboda,
2007). This fraction is variable and can therefore not be directly applied to the syn-
aptic current; this would also cause a reversal of the calcium current at the reversal
potential of the synaptic channel (approximately 0 mV). Instead, one needs to com-
pute the GHK equation for the calcium current through the synaptic channel and

scale it by the time-varying synaptic conductance gsyn (Mayer and Westbrook, 1987;
Badoual ct al., 2006):

— nll
]CuS = PCa M G( V: Cf’o: Ca,-), (42)

Ysyn

where Pc, is scaled to obtain the correct fraction of current at the reference voltage
and G(V, Ca,, Ca;) is the GHK current equation (equation 5.13),
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Calcium Removal

The free cytoplasmic calcium at rest is very low (around 50 nM) because most of the
caleium is bound to buffers (see later) or removed effectively by Na®-Ca*" exchang-
ers and ATP-driven pumps. Pumps are present on both the plasma membre'ine and
the membrane of several organelles, with endoplasmic reticulum (Sabatini et al.,
2002) and mitochondria (Friel, 2000) being the largest calcium sinks. R'emov?l hats
a strong effect on calcium dynamics and in the case of small_stlructures like spines it
may even dominate the decay time of calcium signals (Sabatini _et al., 2002). In gen-
eral, neuron models have not been very sophisticated in simulating membrane trans-
por£ers compared with the detailed modeling that 1s common for cardia.c cells (e..g.,
DiFrancesco and Noble, 1985; and more recently the Kyoto model, which contains
four membrane transporters and several leak currents; Takeuchi et al., 2006).'

The Na*-Ca™" exchanger (Blaustein and Lederer, 1999; Dipolo and Beaugé, 2006)
is a low-affinity high-throughput system that uses the sodium gradient to remove cal-
cium, with a stoichometry of probably 3:1. The classic model by DiFrancesco and
Noble (1985):

]NuCa = kNaCzl([Caz+](; [NaJrEe}'FV/RT o [Ca2+]f[Na+]je(y—l)FV/RT)/
(14 0.001([Ca*];[Na*]] + [Ca?"],[Na*]})) (43)

is still often used, with knac, the maximum rate (in units of A mM™*, .tak‘en pro-
portional to the membrane surface), | |, and | |; representing outsi@e and msadelcon-
centrations, respectively, and the partition parameter y representullg the. [ractional
position within the membrane of the voltage-sensitive energy barrlelr (Hille, 2001),
usually taken to be 0.38. A disadvantage of this simple model is that it (.1065 not rep-
resent the affinities of the calcium and sodium binding sites, which are 1nco1:p0rated
into more modern models (Cortassa et al., 2003; Takeuchi et al., 2006?. Since the
Na'-Ca*" exchangers come in several molecular forms (Philipson -and Nicoll, 2000},
one can expect future models to be based on the kinetics of specific gene prgducts.
Usually only the exchange over the plasma membrane is mpdeled, but in reality ex-
change also occurs with internal organelles like mitochopdna (Cortassa et ?11., 2003)..

Equation (4.3) is formulated as a current and empham_zesa therefore, an Importafi
property of exchangers and pumps: they are clectrogenic. In the case z(f the Na*-
Ca®* exchanger, this results in an inward current (z = —1) when [Ca’'], becomfes
high, although this depends on the exact stoichiometry of the exchange (Blaustein
and Lederer, 1999). .

The C(f—A,TPaSB)pw?TpS are present both on the plasma membrane (PMCA fgmlly)
and on the sarcofendoplasmic reticulum (SERCA family) (Strchle.r and.TrelmaTl,
2004). These high-affinity, low-capacity pumps are often modeled with a simple Hill
(1910) equation:
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dC e
= Viax ’ .
dt K, +Cn (4 4)

with Fay as the maximum pump rate (units of moles per second taken proportional
to the membrane surface), K, the dissociation constant, and n the Hill constant (a
measure of cooperativity between the binding sites). For n = 1, equation (4.4) reduces
to the Michaelis-Menten function (chapter 3, section 2; Michaelis and Menten,
1913). Kinetic models for the different isoforms of SERCA pumps are becoming
available (Dode et al., 2002; Yano et al.. 2004); these models also include the inhibi-
tory effect of the calcium store concentration on the pumps (Burdakov et al., 2005).
Further elucidation of the structural basis of calcium movement by these pumps
(Olesen et al., 2007) may lead to a new generation of kinetic models.

The PMCA pump generates an outward current (z = 2) and therefore it will coun-
teract the current caused by the Na*-Ca®* exchanger. The net electrogenic effect of
the pumps and exchangers is usually neglected in neural simulations but can never-
theless reach about 1% of the amplitude of /¢, and modulate it significantly (De
Schutter and Smolen, 1998).

One problem in using simple models of the exchanger and pumps, as in equations
(4.3) and (4.4), is that they may drive calcium below its resting concentration. A
common solution to this problem is to use a small leak from the endoplasmic reticu-
lum, which is calibrated to give a stable resting concentration (Schmidt et al., 2003),
but this may require rather large leak currents. Shannon et al. (2000) have proposed
a more physiological model that includes the reverse mode of the SERCA pumps.

Calcium Release

Gated calcium release from internal stores in endoplasmic or sarcoplasmic reticulum
can cause large changes in the internal calcium concentration. Calcium release is best
known for its important role in the generation of calcium oscillations and calcium
waves (Berridge et al., 2003; Fiacco and McCarthy, 2006), but it also contributes to
the induction of synaptic plasticity in many systems (Bardo et al., 2006). Two impor-
tant receptor channel types have been identified: inositol triphosphate (IPs) (Taylor
and Laude, 2002) and ryanodine (Fill and Copello, 2002) receptors, both of which
have multiple subtypes. The expression of these receptors and their distribution are
cell specific.

Calcium release is usually modeled as a ligand-dependent flux along the concentra-
tion gradient:

dC;
_[E = VR.fo(Ci‘ - Ci): (45)

where ¥y represents the maximum rate of release, f, the fraction of open channels,
and C the calcium concentration in the stores. Phenomenological models often use
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a Hill function (equation 4.4) to relate f;, to the ligand concentration and equation
(4.5) can then be solved as a simple ODE (chapter 1, section 6). For both receptor
types, more complex Markov gating models (chapter 5, section 5) are available.

Another issue is how to model the calcium store concentration C;. This concentra-
tion is quite high, 100-800 uM (Burdakov et al., 2005), and strongly buffered. The
dynamics of calcium stores can influence the overall changes in cytoplasmic calcium
concentration to a large degree; for example, in some models of calcium oscillations,
the calcium release ends because of depletion of the store (Goldbeter et al., 1990).
Recently it was confirmed that calcium release may indeed lead to highly localized
decreases of the calcium store concentration (Brochet et al., 2005).

The IP; receptor is activated by both calcium and IP;. The source of the latter
in neurons is activation of membrane-bound G-protein-linked receptors like the
metabotropic glutamate receptors (mGIuR) (Coutinho and Knopfel, 2002). The cal-
cium influx caused by IP; receptors has been modeled extensively to simulate calcium
oscillations, first with phenomenological models (Goldbeter et al., 1990) and then
with simple binding models (De Young and Keizer, 1992). The latter was the first
model to include the dual action of calcium. At low concentrations it activates the
IP; receptor, whereas higher calcium concentrations inactivate it (Taylor and Laude,
2002). Although this model is still extensively used, including a simplified version (Li
and Rinzel, 1994), it has been outdated by the avalanche of recent molecular and
biochemical data. Several more sophisticated models have been proposed recently
(Doi et al., 2005) and have been reviewed by Sneyd and Falcke (2005). In addition
to modeling the receptor, 1P; metabolism needs to be simulated also. In many simu-
lations this has been approximated as a pulse combined with a linear decay, but
more detailed kinetic schemes have been proposed (Bhalla and Iyengar, 1999).

The molecular mechanisms underlying ryanodine receptor activation are less well
known (Fill and Copello, 2002). It is suspected that ryanodine receptors are activated
by a specific, unidentified signaling molecule, but they are best known as the recep-
tors of calcium-induced calcium release (CICR) because their opening is strongly
facilitated by increases of C; and of C,. Again, both phenomenological (Keizer and
Levine, 1996) and complex gating models (Zahradnik et al., 2005) have been
proposed.

Calcium Buffering

Calcium buffering can be a source or a sink of calcium, depending on the balance
between bound and free calcium. In fact, most of the cytoplasmic calcium is not
free but is bound to different proteins. Neurons express a particular class of proteins
called calcium buffers that are characterized by the presence of multiple EF-hand
calcium-binding domains (Lewit-Bentley and Rety, 2000), for example, calbindin,
calmodulin, and parvalbumin. The different calcium binding sites on these buffer
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proteins will usually also have different rate constants and show cooperativity (Faas
et al., 2007), but such complexity is often ignored (however, see W. R. Holmes, 2000;
Schmidt et al., 2003; Naoki et al., 2005; Means et al., 2006; and Kubota et al., 2008
for models using binding site-specific rate constants). Under these simplifying condi-
tions, the interaction of calcium with buffers is reduced to a second-order reversible
reaction (chapter 3, section 2):

k
Ca’* + B <:>f CaB, (4.6)

h

with a forward rate constant kyp and a backward rate constant k;,, which are related
to the dissociation constant K, of the buffer as K; = k;/ k. An important issue is
whether the buffer is mobile. Several experimentalists have the impression that cyto-
plasmic buffers are immobile because little or no washout is observed (Helmchen
ct al., 1996; Sabatini et al., 2002). In fact, however, most buffers have diffusion con-
stants Dy in the range of 20-50 um?/s (Schmidt et al., 2003), although the value for
calmodulin is unclear (Naoki et al., 2005). Fractions of these buffers may be bound
to cytoskeleton, but the majority of the molecules remain mobile (Schmidt et al.,
2005). So for a complete model of calcium buffering, one requires for each buffer
four parameters: the rate constants k; and k;, the diffusion constant Dy, and the to-
tal buffer concentration [B]; (the sum of [B] and [CaB]). The first three parameters
are known for the most common calcium buffers (e.g., Schmidt et al., 2003 for par-
valbumin and calbindin and Means et al., 2006 and Tadross et al., 2008 for calmo-
dulin or calreticulin) but [B] is neuron specific and often a free parameter. A useful
experimental value to constrain [B|, is the buffer capacity « of the neuron, the frac-
tional amount of bound over free calcium:

d[CaB]
K= (4.7)

d[Ca*t]’

Buffer capacity can be measured experimentally (Maravall et al., 2000} and ranges
from 20 to 200 in most neurons (Neher, 1998; Sabatini et al., 2002) and up to 2,000
in Purkinje cells (Hartmann and Konnerth, 2005). Notice that x may vary locally
within neurons (Neher. 1998; Sabatini et al., 2002). Buffer capacity is related to the
total bufler concentration for buffers with a low affinity (high K,):

B . i
K % if [Ca®") « Ky. (4.8)
Calcium stores have high concentrations of specific buffers like calsequestrin and cal-
reticulin, which have large numbers of calcium-binding sites but low affinity (Beard
et al., 2004).
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4.2 Calcium Diffusion

Diffusion of calcium, or of other signaling molecules like 1P;, and of buffer mole-
cules, can be simulated with any of the methods described in chapter 3, section 5.
The diffusion constant D should be based on measurements in cytoplasm because
this has a much higher viscosity than water; for example, D¢, for cytoplasm is
2% 107% cm? s7!, which is three times slower than in water (Albritton et al., 1992).
Note that the value for D¢, used in the simulations may be very different from the
experimentally observed apparent diffusion constant D,p,. because many factors
may affect the measured Dy, (section 4.3 and Santamaria et al., 2006; Wagner and
Keizer, 1994).

Numerical Solution and Dimensionality

In general, solving the diffusion equation is an expensive operation. We focus here
only on deterministic solutions, but similar issues apply when stochastic methods
are used (chapter 3, section 5). Numerical accuracy will require the use of smaller
discretization steps both in the spatial (submicrometer) (Carnevale and Rosenthal,
1992) and time (about 1 ps) domains compared with the veltage equation (11.1),
resulting in calculations that are several orders of magnitude slower (De Schutter
and Smolen, 1998). For one- and two-dimensional diffusion, implicit methods can
be used; explicit methods require even smaller time steps. The Crank-Nicholson
method works quite well for the tridiagonal matrix describing a one-dimensional
case (Fletcher, 1991; Press et al., 2007) and can be used in two dimensions with the
alternating direction implicit (ADI) method (Press et al., 2007; see W. R. Holmes,
1995 for a neuroscience implementation). A specialized ADI implementation for
modeling calcium dynamics in one to three dimensions is the program CalC (see
the software appendix; Matveev et al., 2002). Deterministic modeling of three-
dimensional diffusion usually employs finite-volume approaches based on slower,
iterative solution methods (Ferziger and Peric, 2001).

Traditionally, many neural models have limited themselves to one-dimensional dif-
fusion in modeling spines (W. R. Holmes and Levy, 1990; W, R. Holmes, 2000} or
activation of membrane channels (De Schutter and Smolen, 1998; Yamada et al.,
1998) because such models are relatively easy to solve. Of course this simplification
does not allow accurate simulation of highly local phenomena like calcium nano-
domains (Berridge, 2006; see section 3), which need a full 3-D simulation. Even in
cases where only diffusion over long distances is of interest, ignoring some spatial
dimensions may come at a risk. For example, a detailed 2-D simulation of IP; dif-
fusion in Purkinje cell spiny dendrites (Hernjak et al.,, 2005) did not report the
experimentally observed anomalous diffusion of IP; caused by trapping in spines
(Santamaria et al., 2006). The discrepancy is explained by the difference in spine
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density between 2-D and 3-D models of the spiny dendrite, which strongly influences
the occurrence of anomalous diffusion (Santamaria et al., 2006). For simple geomet-
ric reasons, 2-D models can never approach the real spine density of Purkinje cells.

Electrodiffusion

Treating the computation of changes in membrane potential (chapter 10) and the dif-
fusion of ions as separate processes is a simplification because the membrane electric
field can exert an effect on charged molecules. Similarly, the axial current computed
by the cable equation (10.2) is in reality caused by the drift of ions. Proper treatment
of this interaction requires the use of the Nernst-Planck equation (Jack et al., 1975),
which is rather cumbersome. Qian and Sejnowski (1989) have argued that in thin
dendrites (0.1 pum) application of the full electrodiffusion equation is required to
track fast changes in ionic concentration, and they proposed a modified cable equa-
tion. Most of the effects they describe, however, can already be simulated by the
proper use of the Nernst or Goldman-Hodgkin-Katz equations (chapter 5, section
3) to track changes in the ion equilibrium potential.

Moreover, using the electrodiffusion equation forces the modeler to consider many
cellular details that are normally ignored and that are often poorly characterized.
Examples include the actual charge carriers in the cytoplasm, which may include
small organic molecules like phosphates (De Schutter and Smolen, 1998; Lopreore
et al., 2008), and the variable membrane potential of intracellular organelles (Shemer
et al., 2008; Wikstrém et al., 1997; Yamashita et al., 2006). Since thermal velocities
of molecules (causing the Brownian motion) are almost an order of magnitude larger
than the drift velocities in an electrical field (Hille, 2001), it is unlikely that simulating
the full electrodiffusion equation appreciably changes simulation results compared
with the standard methods derived from the cable equation (Koch, 1999). Compari-
sons of a simulation of action potential generation at the node of Ranvier by the ca-
ble equation and by an electrodiffusion model (Lopreore et al., 2008) showed small
differences in the width of the action potential, but at present it is not clear whether
this prediction is physiologically relevant.

4.3 How to Choose the Right Approach to Modeling Calcium

It is difficult to model caleium accurately because most simulation approaches are re-
ally gross simplifications of reality. Calcium entry, whether through the plasma mem-
brane or from internal sources, is a highly local process, occurring in nanodomains
(below a single channel) and microdomains (below a cluster of channels; Augustine
et al., 2003; Berridge, 2006). Influx from a single channel into the cytosol typically
consists of about a thousand ions and causes a rise to a concentration of several hun-
dred micromolars in a plume with dimensions of ~10 nm. This plume has been given
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different names, depending on the source of calcium: sparks, pufls, sparklets, and
scintillas (Berridge, 2006). Correct modeling of calcium concentrations in a nano- or
microdomain remains a challenge because of the strong gradients, requiring finite-
volume or stochastic approaches on very fine grids (Aharon et al., 1994; Meinrenken
et al., 2002; Shahrezaei and Delaney, 2004).

Since some calcium sensors, such as Ca’*-activated K™ channels, sample concen-
tration in these microdomains (Goldberg and Wilson, 2005; Zhuge et al., 2002;
Fakler and Adelman, 2008), an accurate simulation would require a detailed, compu-
tationally expensive simulation. This is almost never feasible or desired and instead,
modelers use simplified models of calcium dynamics. The question then becomes:
What is the proper simplification to use?

Simple Calcium Pools to Simulate Channel Activation by Calcium

Compartmental neuron models (chapter 11, section 1) often need to compute cal-
cium concentration to activate Ca’*-dependent channels (chapter 5) in the plasma
membrane. Since the calcium concentration itself is usually not of primary interest,
the model can be highly simplified. The most commonly used model is the exponen-
tially decaying Ca** pool (Traub and Llinas, 1977):

[!Cj o Ica(f)

e = i C nj- 4.9

This model contains a biophysical component, the influx (compare with equation
4.1), and a phenomenological one, the removal of calcium. The influx is scaled by a
volume v. Although it may seem that v is fixed by the size of the electrical compart-
ment, it is in practice a free parameter because for large compartments it makes more
sense to consider the calcium concentration only in the submembrane region, where
it is sampled by the Ca®*-activated channels. Therefore v is often taken as the vol-
ume of a submembrane shell about 0.2 pm deep (De Schutter and Bower, 1994a),
thinner shells causing steeper changes in calcium concentration. The removal of cal-
cium is governed by the parameter ff, which lumps together the effects of buflers,
pumps, and diffusion. f is the inverse of the time constant of exponential decay and
therefore this parameter will determine how fast calcium returns to the resting con-
centration Cpyip. A wide range of values are used for this parameter; decay time con-
stants (1/f) range from 0.1 ms (De Schutter and Bower, 1994a) to 50 ms (Traub and
Llinds, 1977). Fast decay time constants combined with thin submembrane shells
make the computed calcium concentration track calcium influx closely, which is a
reasonable approximation of the changes in microdomain concentration (Sherman
et al., 1990) and can be used to activate BK-type Ca®"-activated potassium channels
(Zhuge et al., 2002; Fakler and Adelman, 2008).
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One problem with the calcium pool is that it reduces the calcium dynamics to a
single time constant. If, for example, multiple types of Ca2*-activated K+ channels
need to be simulated, this may cause a problem because these typically show different
dynamics. SK-type Ca®*-activated potassium channels activate slower than BK
channels and the difference is attributed to the indirect activation by calcium (Fakler
and Adelman, 2008). A simple and effective solution is to use two or more calcium
pools with different values for f (Tegnér and Grillner, 1999). This can be imple-
mented in different ways. One can distribute the calcium influx over the pools or
one can attribute specific pools to different sources of calcium (Tegnér and Grillner,
1999). Although this approach is attractive, it increases the number of purely phe-
nomenological parameters in the model. Therefore, especially if the data are avail-
able, one should instead consider a more detailed calcium buffering model in which
the different affinities of the Ca**-activated channels make them sense varying time
constants of the system (see the following discussion).

Calcium Buffering in a Single Compartment

If the binding properties of the intrinsic calcium buffers are known, as is now the case
for an increasing number of neurons (Cornelisse et al., 2007; Schmidt et al., 2003), 1t
is more realistic to model a system with calcium buffers and pumps at only a little
added computational cost (figure 4.1). Each additional buffer introduces two new
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Simulation of calcium decay kinetics in a Purkinje cell spine. The model is parametrized based on compar-
ing calcium imaging data in normal and transgenic mice and includes three diffusible buffers: the calcium
dye (OGB-1). calbindin (CB, two binding sites), and parvalbumin (PV). Panel a shows that the model rep-
licates well the biphasic calcium decay observed experimentally in both spine and dendrite, Panel b shows
the calcium binding of the different buffers in the spine. It indicates thal the biphasic decay is caused by the
different binding kinetics of the two intrinsic buffers and that the measurements in spines suffer from satu-
ration of the calcium dye. (Modified with permission from Schmidt et al. 2003.)
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time constants to the system, causing more complex calcium dynamics in the model.
The forward rate of the buffer will be critical in determining the maximum rise in cal-
cium concentration. An exception is buffer saturation, i.e., when most of the buffer
calcium binding sites become occupied, because then the system reverts to the unbuf-
fered behavior (Bormann et al., 2001).

Removal of calcium can be modeled as a single high-rate calcium pump. Such a
single-compartment system ignores the effects of diffusion, but this simplification is
justified in some structures, such as a dendritic spine (Sabatini et al., 2002). If one
adds a few more molecular features to such a simulation, e.g., calcium release from
intracellular stores, it becomes a valuable tool in a systems biology approach to sim-
ulate signaling pathways involved in the induction of synaptic plasticity (Doi et al.,
2005). . _

For larger structures where calcium influx across the cell membrane is the primary
source, diffusion toward the center becomes more important (Yamada et al., 1998).
In principle, one could approximate the removal that is due to diffusion phenomeno-
logically (equation 4.9) and use this single-compartment buffering approach to model
the calcium concentrations needed to activate potassium channels, but this approach
has not yet been tested in large compartmental models (chapter 11, section 1).

Buffered Calcium 1-D Diffusion to Model Caleium Imaging Data

A more realistic approach is to include 1-D diffusion of calcium and the mobile buf-
fers into the model, but this steeply increases the computational cost. Such systems
have been investigated extensively, using both analytical (Naraghi and Neher, 1997,
Wagner and Keizer, 1994; Zador and Koch, 1994) and modeling (Nowy.rck){ and
Pinter, 1993) approaches. An important concept introduced by these studies is the
apparent diffusion constant for buffered calcium diffusion, Dypp:

Dupp = rl‘;DCa + xD3p, (410)
where the buffer capacity x was defined in equations (4.7) and (4.8). Dy 1s a conve-
nient way to describe how binding to buffers affects calcium diffusion. However, the
simplification is valid only for the steady state in the presence of unsaturated buffers
with a fast forward rate (Wagner and Keizer, 1994) and therefore in most modelg a
full simulation is warranted (Bormann et al., 2001). In the presence of an im?noblle
buffer (D = 0), equation (4.10) predicts a slowing down of the calcium (.ﬁffusmn be-
cause of calcium binding to the buffer. This effect steeply limits the spatial extent _to
which calcium can affect chemical reactions in the neuron compared with other sig-
naling molecules with similar diffusion constants that are not bufﬁ?red, such EIS.IP_}
(Kasai and Petersen, 1994; Santamaria et al., 2006). It is interesting that calcium
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seems to diffuse effectively over long distances, although slowly, in the endoplasmic
reticulum (Choi et al., 2006; Mogami et al., 1997} despite its assumed high buffer
capacity.

The mobility of buffers (Dg > 0 in equation 4.10) can reverse this situation be-
cause they may increase D,p, by shuttling calcium from high concentration regions
(where they bind calcium) to low concentration regions (where they unbind it) (Bor-
mann et al., 2001; Wagner and Keizer, 1994).

This is one of the problems that calcium dyes introduce. Most calcium dyes act as
mobile buffers and may modify the calcium dynamics being observed by changing
both buffer capacity and apparent diffusion (A. Takahashi et al., 1999). One solution
is to use low-affinity dyes only, but this excludes measuring small changes in concen-
tration from that at rest (S. S. Wang et al., 2000). An alternative is to use modeling
methods to estimate the error (H. Blumenfeld et al., 1992; Cornelisse et al., 2007;
Sala and Hernandez-Cruz, 1990). This can even be done with a spreadsheet (Mc-
Hugh and Kenyon, 2004; http://www.medicine.nevada.edu/physio/docs/diffusion
-htm). The basis of these models is 1-D buffered calcium diffusion in a spherical cell
(Yamada et al.. 1998), combined with a transfer function to compute the fluorescence
from the concentrations of bound and unbound calcium dye (Grynkiewicz et al.,
1985) and, possibly, a model of the filtering properties of the imaging equipment
(H. Blumenfeld et al., 1992).

Buffered 1-D diffusion has also been used to simulate calcium transients in den-
dritic spines, where the spine is modeled using an FD approach (chapter 3, section
5) by stacking a set of thin cylinders on each other (W. R. Holmes and Levy, 1990;
Zador et al., 1990). Although such simulations have provided useful insights, they
are being replaced with more detailed 3-D models (Keller et al., 2008).

A Full 3-D Model to Simulate Calcium Signaling Pathways

This is the ne plus ultra in calcium modeling and the appropriate tool for modeling
the effect of calcium nano- and microdomains. It is, however, not only challenging to
compute these complex models, but also to design them. The number of molecular
species simulated and the specification of parameters and boundary conditions make
the development and tuning of these models as demanding as large compartmental
models (chapter 11).

As a result, many recent examples simulate only a small part of a neuron, i.e., sig-
naling events in a spine (Ichikawa, 2005; Keller et al., 2008) or calcium entry in a
presynaptic terminal (Bennett et al., 2000; Meinrenken et al., 2002). It is interesting
that stochastic simulation is being used extensively in neuroscience for such models,
with MCell or STEPS (see the software appendix). This is quite different from the
systems biology approaches, which focus more on the use of finite-element methods
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in unstructured meshes to attempt to model signaling in large parts of reconstructed
cells and organelles (Hernjak et al., 2005; Means et al., 2006).

Based on continuous improvements in calcium imaging techniques, combined with
the increase in available computer speed and the rapid development of new software
tools for 3-D simulation, we expect to see exciting new, detailed calcium models in
the near future.



