1 O Passive Cable Modeling

William R. Holmes

The application of passive cable theory to neuronal processes has a long and rich his-
tory (reviewed by Rall, 1977). Neuronal processes, being long and thin with an elec-
trically conducting core surrounded by a membrane with high resistance, are
naturally described as core conductors. Cable theory (named for its application to
the first transatlantic telegraph cable) provides a straightforward means to study
core conductors and has proved to be highly relevant and useful for the study of neu-
ronal processes. Passive cable theory assumes that membrane properties are constant
(independent of voltage and time). Although there is much evidence that membrane
properties are not passive (see chapter 11), passive cable theory and passive cable
modeling remain important for several reasons. First, they provide an intuition that
is difficult to attain otherwise for understanding how neurons function; nonlinear
properties are notoriously nonintuitive. Second. passive cable theory provides a num-
ber of significant insights whose usefulness carries over to the nonlinear case. Third,
passive neuron models provide an important starting point or reference case from
which one can build more complex models with excitable properties. Fourth, the
propagation and summation of synaptic inputs are largely determined by passive
properties. Finally, the effects that voltage-dependent conductances have on den-
drites are heavily influenced by the passive electrotonic structure.

This chapter introduces basic passive cable theory. It describes properties of pas-
sive systems important for experimentalists and presents some insights from cable
theory, many of which have received too little attention. It then discusses from a his-
torical view how to estimate electrotonic parameter values from experimental data,
along with problems associated with these older techniques. Finally, modern meth-
ods for estimating parameter values from data for passive systems and guidelines
for constructing passive models are discussed, along with potential pitfalls that one
should know. More detailed expositions and additional background on many of
these topics are given in monographs by Jack et al. (1975), Koch (1999), Rall
(1977), Rall et al. (1992), Rall and Agmon-Snir (1998), and Segev et al. (1994).
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10.1 Electrotonic Parameters, the Cable Equation, and the Equivalent-Cylinder
Model

To understand insights from cable theory, it is useful to review briefly some basic
properties of neurons, show where the cable equation comes from, discuss some mis-
conceptions about the meaning of some electrotonic parameters, and introduce the
equivalent-cylinder model.

Membrane Potential and Input Resistance

There is a voltage difference across the neuron membrane resulting from the different
distributions and membrane permeabilities of ions and charged molecules on either
side of the membrane. This voltage difference across the membrane typically ranges
from 40 to 90 mV among cell types, with the inside being negative relative to the out-
side. We say that cells have a resting membrane potential, V,,, of —40 to —90 mV. If
we inject constant current into the cell, the voltage will change to a new steady-state
value, illustrating another basic property of neurons, the input resistance, Ry. For
passive systems, input resistance is computed simply from Ohm’s law as Ry =
AV /AT where AV is the change in voltage that occurs with the change in applied cur-
rent, AI. Input resistance is an important parameter to measure because it illustrates
in a general way how excitable a cell is in response to synaptic input.

Input resistance, Ry, as a characteristic property of a cell, is measured at the soma.
However, it is useful at times to refer to a local input resistance. This is the input re-
sistance that would be measured at a dendritic location if an clectrode could be
placed there. Because dendritic processes are often very thin, local input resistance
is typically larger than the input resistance measured at the soma (see section 10.2),
but this is not necessarily the case.

Membrane Capacitance and Resistance

When a current is injected into a cell, the new steady-state voltage is not reached
instantaneously. This can be explained by considering the properties of the mem-
brane. The neuron membrane is a lipid bilayer of limited thickness and because the
voltage inside is negative relative to the outside, the membrane stores and separates
charges. We say the membrane has a capacitance. The amount of charge, Q. sepa-
rated by a capacitor is given by the formula Q = CV where C is the characteristic ca-
pacitance of the membrane and ¥ is the voltage difference across the membrane. The
specific membrane capacitance, C,,, for neurons has long been considered to be a bi-
ological constant (Cole, 1968) with a value of approximately 1.0 pF/cm?. This value
is based on measurements made from the squid axon (Curtis and Cole, 1938) and
may be a slight overestimate. Squid axon has a high density of proteins that form
voltage-dependent ion channels in the membrane. Artificial lipid bilayers with no
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Figure 10.1

Conceptual models for neuronal membrane. (a) Simple circuit for a patch of membrane. (b) Circuit for a
neuron cable. V; is the intracellular voltage, V, is the extracellular voltage, E, is the membrane battery, r,,
is the resistivity of a unit length of membrane (€cm), ¢, is membrane capacitance per unit length (pF/cm),
ro (also called ;) is axial resistivity per unit length of cable (€/cm), r. is extracellular resistivity per unit
length (©/cm) and Ax is the length of the patch. These are related to the specific units of measure described
in the text by r,, = Ry /7d, ¢y = Cymid, 1q = 4R, /md?, where d is the diameter of the cable.

embedded membrane proteins tend to have a lower C,, (Benz et al., 1975; Niles et al.,
1988), with values ranging from 0.65 to 0.94 pF/cm?, depending on the lipid compo-
sition and the thickness of the hydrocarbon core. More recently, Gentet et al. (2000)
made direct measurements of C,, in cortical pyramidal, spinal cord, and hippocam-
pal neurons and reported an average value of 0.9 pF/cm?.

The lipid bilayer also provides a resistance to current flow. If the membrane were a
pure lipid bilayer, the specific membrane resistivity, R,,, would be in the neighbor-
hood of 10® Qcm? (Almers, 1978) or higher (Hille, 2001). However, the membrane
is studded with proteins, some of which form ion channels, and this reduces the
membrane resistivity at rest to the 10°-10° Qcm? range. Given that the membrane
has a capacitance and a resistance, it is natural to develop a conceptual model of
the membrane as an electrical circuit as in figure 10.1a, where the battery, £,, repre-
sents the membrane potential, and to consider membrane current as the sum of the
current flows through the separate capacitive and resistive branches of this circuit.

Axial and Extracellular Resistance

The simple conceptual model of figure 10.1a applies for a patch of membrane or for
spherical or isopotential cells, but neuronal processes more typically resemble cylin-
ders or cables. In neuronal cables, current flows not only through the capacitance
and resistance of the membrane, but also through the interior of the cell and in the
extracellular space as well. When these factors are considered, our conceptual model
of the neuron cable becomes the electric circuit shown in figure 10.1b. Strictly speak-
ing, there is three-dimensional current flow inside the neuronal cable, but in practice



236 William R. Holmes

we consider only the longitudinal current down the cable through the axial resistance
provided by the intracellular medium. This is reasonable because the process diame-
ter is generally small, making intracellular resistance to radial current flow negligible
compared with the membrane resistance; similarly, we also neglect intracellular resis-
tance to angular current flow.

The specific intracellular or axial resistivity, R,, is a difficult parameter to measure
(see discussion in Rall et al., 1992). Intracellular resistivity is traditionally labeled R;.
Unfortunately some papers incorrectly use R; to mean input resistance. To remove
all ambiguity, we use R, for intracellular or axial resistivity and Ry for input resis-
tance. Estimates for R, range from 50 to 400 Qcm in mammalian neurons; lower
estimates have been obtained in marine invertebrates where the intracellular ion con-
centrations are much different. For example, the resistivity of “Woods Hole sea-
water” is 20 Qem and the resistivity of squid axoplasm, measured relative to
seawater, is 1.0—1.6 times higher (Cole, 1975; Carpenter et al., 1975). By comparison,
at 20°C, mammalian saline has an R, of 60 Qcm and frog Ringer’s solution has an
R, of 80 Qcm (Hille, 2001). Barrett and Crill (1974) measured an average R, of
70 Qcm in cat motoneurons at 37 °C. Values of 100-250 Qcm have been reported
for red blood cells and frog skeletal muscle (Pilwat and Zimmerman, 1985; Schanne
and De Ceretti, 1971). Clements and Redman (1989) computed a value of 43 Qcm at
37°C for motoneuron cytoplasm based on ion composition, but noted that the actual
R, will be higher than expected from known concentrations of ions and ion mobility
because of the presence of charge binding and various proteins, carbohydrates, and
organelles. Different intracellular compositions may explain the variability in mea-
sured values for the same cell type as well as that among different cell types. Other
factors affecting R, are the composition of the extracellular medium (Schanne,
1969; the mechanism is unclear; it may be because of an induced change in the free
and bound concentrations of ions inside) and temperature (R, will decrease with
increasing temperature; Trevelyan and Jack, 2002).

Extracellular resistance is usually assumed to be negligible in models. While this is
clearly not true (because extracellular recordings could not be made otherwise and
ephaptic coupling has been observed among tightly packed neurons; Jefferys, 1995),
it is a reasonable assumption in most situations when the extracellular space is large
(e.g., see Rall, 1959), the neuron is isolated, or the concern of the model is a single
neurorl.

Converting the Conceptual Model to the Cable Equation

The conceptual models represented in figure 10.1 can be converted into mathematical
equations by straightforward application of Ohm’s law, O = CV, and KirchofT’s law
(conservation of current at a node). The most difficult part of this conversion is to
keep track of the units of the various parameters. The mathematical equations for
the conceptual models in figure 10.1 are
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which says the change (or difference) in intracellular current flowing along the inside
of the cable equals the current that flows across the membrane. Equation (10.2) is
usually multiplied by r,, and rearranged to yield the cable equation
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where 7 is the membrane time constant and A is the space constant defined by
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(See figure 10.1 caption for notation definitions.) Note that if extracellular resistance
is included in the derivation, then r, + r. is substituted for r, in the definition of A.
Equation (10.3) is often expressed in nondimensional form by defining 7" = #/7 and
X = x/4 to get rid of those pesky constants and allow a more straightforward math-
ematical analysis. Other useful terms are L, the electrotonic length, which is defined
by L = //4 where / is the physical length of the cable; and the electrotonic distance
X, defined as earlier by X = x/4, the physical distance from the beginning of the ca-
ble divided by the space constant. The parameter L will appear numerous times in
the following discussion.

Misconceptions about T and 4

Equation (10.1) and the steady-state version of equation (10.3) (left-hand side = 0)
are easily solved and the solutions are often used in textbooks to indicate the impor-
tance of 7 and 4 for electrical signaling. However, this is often done in a misleading
way. A solution for equation (10.1) is ¥ (¢) = Vye™/*, from which it is usually con-
cluded that 7 is the time it takes for a voltage perturbation to decay from rest to
37% (1/e) of its initial value, However, rarely is it stressed that this is true only for
an isopotential cell or sphere (the conditions leading to equation 10.1). For cylinders,
the decay (as well as charging) is much faster (figure 10.2a). In an infinite cylinder,
voltage will be only 16% of its initial value at time ¢ = 7, and in a finite cable with
an electrotonic length L = 1.0, voltage will decay to 28% of its initial value in this
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Effect of geometry and boundary conditions on transient and steady-state voltage changes. (a) A constant
current is applied at time 7 = 0 ms for 100 ms. The upper curves show the voltage during the first 50 ms of
the charging phase and the lower curves show the voltage decay for the first 50 ms after the current is ter-
minated. Note the symmetry of the charging and decay transients. Curves top to bottom are in the same
order as in the legends and represent the responses in an infinite cylinder, a sphere, finite cylinders with
electrotonic lengths of 1 and 2, and a cylinder with an electrotonic length of 1 with a large side branch
attached. The vertical lines at 10 and 110 ms are times ¢ = 7 after the current injection is turned on or off
(r = 10 ms). (b) Steady-state voltage decay with distance. Geometries include cylinders with thick () and
thin (b, d) side branches. Cases with flare (¢) and taper (a) were constructed with symmetric trees with
diameters of parent and daughter branches satisfying (dparen )% == > (daaughiers)” at branch points where
p = 2 represents flare and p = 1 represents taper. Electrotonic length was 1.0 in all cases except (g) and

(h).
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time. In a finite cylinder, there are additional, faster equalizing time constants that
increase the rate of the decay. These are described in more detail later. In figure
10.2a the charging transients are also shown. It is not readily appreciated by those
new to the field that charging and decay transients are symmetric.

Similarly, a steady-state solution for equation (10.3) is ¥(x) = Voe /%, from
which it is usually concluded that 4 is the distance at which the steady-state voltage
decays to 37% (1/e) of its value at the origin. However, rarely is it stressed that the
solution and the conclusion are valid only for an infinitely long cable. For a finite ca-
ble with an electrotonic length L = 1.0, voltage will decay to only 65% of its value at
the origin at a distance x = A. Differences such as this arise because of the boundary
conditions at x = /. In the infinite-cylinder case, an infinite cylinder with its associ-
ated conductance is attached to the (artificial) boundary at x = A and current flows
into this cylinder, whereas in a finite cylinder with L = 1.0, the cylinder ends at
x = A. For a sealed-end boundary condition, there is no conductance and no current
flow at this boundary (assuming a leaky end through a small end cap of a membrane
makes a negligible difference). Voltage decay with distance is also affected by taper
or flare in the diameter of the equivalent cable and by side branches off the main
cable. Examples of this are shown in figure 10.2b.

Nevertheless, T remains a useful measure of voltage decay with time and 4 remains
a useful measure of voltage decay with distance. However, it is important to under-
stand how boundary conditions and complex dendritic geometry can influence tem-
poral and spatial voltage summation and voltage decay in a neuron.

Equivalent-Cylinder Model

Although neurons are highly branched structures rather than single cylinders, a
highly branched neuron can be equivalent mathematically to a single cylinder when
a particular set of conditions holds. This is Rall’s equivalent-cylinder model (Rall
1962a,b). Starting with the most distal branches and working inward, each pair of
daughter branches is replaced by a single cylinder having the same input conductance
and electrotonic length as the two daughter branches but having the same diameter
as the parent branch. This is possible when R,, and R, are uniform; all terminal
branches have the same distal boundary condition (e.g., no current through the end
of the branch); all terminals end at the same electrotonic distance from the soma; and
the daughter branch diameters raised to the 3/2 power and summed equal the parent
branch diameter raised to the 3/2 power (often called the 3/2 rule or 3/2 power law).
These constraints also preserve input conductance and membrane area between the
branched tree and the equivalent cylinder.

The equivalent-cylinder model is a useful construct for studying the effect of
current input or a voltage clamp applied at the soma on voltage changes throughout
the dendritic tree. Its simplicity allows mathematical analysis and ready insight into
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dendritic function. However, it is less useful for studying dendritic input. Any input
to a location in the equivalent cylinder would have to be divided among all dendrites
in the fully branched structure at the same clectrotonic distance for the responses to
be the same. The equivalent-cylinder model is also useful for estimating parameter
values, as discussed later, Clearly no dendritic tree is likely to satisfy all of the con-
straints of the equivalent-cylinder model, particularly the constraint of all dendrites
terminating at the same electrotonic distance from the soma. A number of neurons
seem to follow the 3/2 rule over much of their dendritic trees (Barrett and Crill,
1974; Turner and Schwartzkroin, 1980; Durand et al., 1983) but others do not (Lark-
man et al., 1992).

10.2  Properties of Passive Systems

To model complex branching structures, one can apply the cable equation (equation
10.3) to every unbranched segment of the dendritic tree and then match boundary
conditions (conservation of current, continuity of voltage) at the branch points,
While there are straightforward ways to do this analytically for the steady-state
case, the mathematics quickly becomes very messy and complicated for the transient
or time-dependent solution. A simplification is to make unbranched segments small
enough so that they are essentially isopotential, model the membrane current of these
segments with equation (10.1), and then couple adjacent segments with “coupling
resistances” based on segment axial resistances (see chapter 11, section 1). This is
the compartmental modeling approach, and although it is simpler because the system
of partial differential equations is reduced to a system of ordinary differential equa-
tions, the mathematics again becomes messy very quickly. It is much more conve-
nient to model complex branching structures numerically, and there are many freely
available software packages, such as NEURON and GENESIS (see the software ap-
pendix), for doing this. Because passive models only require morphology, R, R,,
and C,,,, they are solved particularly quickly with these software programs and model
results can then be compared with data from experimental cells whose voltage
responses have been made passive through the use of pharmacological blockers.

Linearity (and Nonlinearity)

A key property of a passive system is its linear response to current injection. Input
resistance can be calculated from any single constant current injection because
Ohm’s law applies. Doubling the current will double the size of the voltage response,
leaving the input resistance value unchanged. Perhaps less intuitive is the fact that
if current is injected in two different places in the cell, the voltage response at any
location (both transient and steady state) will equal the sum of the voltage responses
to the individual current injections applied separately. However, a passive system is
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not linear when it comes to synaptic inputs. Synaptic currents can be modeled as
gsyn(V — Egyn) or a synaptic conductance times a driving force (see chapter 6, section
6.1). If gsyn is doubled, the voltage response is not doubled because the driving force
is reduced as the voltage approaches the synaptic reversal potential Esyn.

Reciprocity

Passive systems exhibit a nonintuitive symmetry in voltage responses called reciproc-
ity (see discussion in Major et al., 1993b). The voltage response at the soma to cur-
rent injection at a dendritic location will equal the voltage response at this dendritic
Jocation following the same current injection at the soma. It should be noted that the
voltage responses at the injection sites and the degree of voltage attenuation between
the injection site and the recording site may be drastically different, but the responses
at the recording sites will be identical (e.g., figure 1 of Roth and Hiusser, 2001).
Checking for reciprocity is a good way to determine if a dendritic tree is passive or
if blockers have been successful at making it so.

Asymmetric Voltage Attenuation

One property of passive systems discovered early on is the highly asymmetric voltage
attenuation from a distal dendrite to the soma compared with voltage attenuation in
the reverse direction. We first consider the case where a constant current is injected at
the end of a distal dendrite. Because this terminal process is thin, axial current flow is
relatively small (r, is large) and therefore the input resistance at this location is large,
producing a large voltage change. However, the steady-state voltage attenuation
from the point of current injection to the first branch point will be substantial. At
the branch point, current can continue to travel proximally toward the soma or else
travel distally in the sibling branch. Because of the sealed-end boundary condition at
the end of the sibling branch and the comparatively open-end boundary condition in
the proximal direction, very little current goes in the distal direction, and as a conse-
quence there is little voltage attenuation in the distal direction. Voltage attenuation
from this branch point to the next proximal branch point is again substantial, while
voltage attenuation in the distal direction in the sibling branch is again small as a
consequence of the sealed-end boundary condition at the end of this distal path com-
pared with the wide-open end in the proximal direction. This pattern is repeated as
the current spreads proximally (Rall and Rinzel, 1973). Conversely, if the same cur-
rent is injected at the soma, the local voltage change at the soma is relatively small
because of the lower input resistance there, but voltage attenuation in the distal di-
rection is limited because the current divides among multiple branches, with each ter-
minal branch having a sealed-end boundary condition.

Voltage attenuation from a distal site to the soma for transient inputs can be
orders of magnitude more severe than that for steady-state inputs. This fact raises
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the question of whether brief distal synaptic inputs can play any role in exciting a
cell. Despite the significant attenuation of the peak voltage from a distal site to the
soma following a transient distal current input, the time course of the voltage re-
sponse is much elongated at the soma, and the attenuation of the area of the voltage
waveform (integral of the voltage over time) will only be as severe as the steady-state
voltage attenuation discussed earlier. This is true regardless of the time course of the
transient input in a passive system. Numerical examples of this are given in Rall and
Rinzel (1973) and Rinzel and Rall (1974) for dendritic trees equivalent to a cylinder
and in London et al. (1999) when R,, is nonuniform. More recent examples applied
to morphological reconstructions of cortical and hippocampal neurons are given by
Zador et al. (1995) and Carnevale et al. (1997). These studies use the log of voltage
attenuation as the basis for a morphoelectrotonic transform that allows one to visual-
ize voltage attenuation between any point in a dendritic tree and the soma (or atten-
uation in the reverse direction) to gain an intuitive appreciation of the functional
structure of the cell.

10.3 Insights from Passive Cable Theory

Consequences for Voltage Clamp

The voltage attenuation properties of passive systems have particular significance for
the extent of a space clamp in the dendrites when the soma is voltage clamped. Al-
though voltage attenuation from the soma to the distal tips is much less than the
voltage attenuation in the reverse direction, the amount of attenuation is still signifi-
cant. For example, suppose a cell with resting potential of —70 mV is approximated
as an equivalent cylinder with electrotonic length L = 1.0 and the soma end is volt-
age clamped to —10 mV. Then the distal tips would be clamped to —70 + 60/cosh(L)
= —31 mV. Passive cable theory allows one to estimate the space-clamp error for a
given voltage clamp at the soma, and suggests that this error can be quite significant
(Johnston and Brown, 1983; Rall and Segev, 1985; Spruston et al., 1993). One conse-
quence of this is that synaptic reversal potentials can be estimated accurately in a
voltage-clamp experiment only when the synapse is very close to the soma (Johnston
and Brown, 1983; but see Hausser and Roth, 1997b). Suppose one is able to insert a
voltage-clamp electrode into a dendrite. Because voltage attenuation from a distal
branch toward the soma is much more severe than in the reverse direction, the extent
of the space clamp in the dendrite would be extremely limited.

Consequences for the Placement of Inhibition and Excitation

The asymmetry of voltage attenuation also provides insight into why inhibition is
typically located at the soma whereas excitation is typically located more distally.
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Inhibition is very effective when placed at the soma because its effect will be felt
throughout the cell without severe attenuation. Inhibition in distal dendrites is effec-
tive for shunting local excitation, but its effect is limited spatially (Rall, 1964, 1967;
Koch et al., 1983; Segev and Parnas, 1983). As for excitation, excitatory input at
the soma will not produce the large local voltage changes that occur with distal
input. Although large local voltage changes with distal input will attenuate severely
along the path to the soma in a passive system, they are apt to activate voltage-
gated conductances in a nonpassive system. This suggests that perhaps excitation
is better placed in the dendrites than at the soma, where local voltage changes
would be smaller and less able to activate voltage-dependent sodium or calcium
conductances.

Dendritic Filtering of Synaptic Inputs

Electrotonic parameters affect the amplitude and time course of the voltage response
to synaptic inputs at the input location, but how important individual parameters are
depends on whether the synaptic currents are brief or prolonged. If a synaptic input
is brief, the rise time and perhaps the initial decay of the local voltage response are
determined primarily by the time course of the synaptic conductance change, with
the peak amplitude influenced by Cp, Ra, and the dendritic diameter, but not by R,,
(Major et al., 1993a). The synaptic current will initially charge the local capacitance,

start to flow longltudmally through the axial resistance, and only then will it begin to
flow significantly through the membrane resistance. When the synaptic current ends,

the initial local voltage decay is much faster than would be predicted from the mem-
brane time constant. Only the late portion of the voltage decay is governed by 7y If
synaptic currents are more prolonged, the peak local voltage response is determined
by the local input resistance, which depends on R, and R,, but not C,.

In passive systems, the dendrites provide a low-pass filtering of the voltage re-
sponse to synaptic currents and here Ry, plays an important role. Membrane resistiv-
ity will affect voltage attenuation through its influence on the space constant 4 and
will affect the time course of the voltage decay through its influence on 7. As the sig-
nal proceeds toward the soma, the voltage response is attenuated and becomes
spread out. The time to peak and half-width of the voltage response at the soma
can be used to predict how far a synapse is from the soma, with more distal in-
puts having a longer time to peak and a longer half-width (Rall, 1967). However,
both time to peak and half-width are influenced by the synaptic conductance time
course, electrotonic distance, the prevalence of side branches along the path to the
soma and whether inputs are restricted to a single location; these factors make
predictions of synaptic location with this method less precise (lansek and Redman,
1973: Johnston and Brown, 1983; Redman and Walmsley, 1983; Bekkers and Stevens,
1996; Mennerick et al., 1995).
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Propagation Velocity

Although mathematical expressions have been derived with various assumptions to
describe the propagation velocity of a signal (Jack et al., 1975; Agmon-Snir and
Segev, 1993), an intuitive way to think about propagation velocity is simply to con-
sider velocity as distance divided by time where distance is represented by the space
constant 4 and time is represented by the time constant 7. If we do this, we find that
velocity is proportional to [d/(R,R,,C2)] "2 and this expression clearly illustrates the
dependence of velocity on electrotonic parameters and diameter.

Optimal Diameter

Can a neuron optimize the effectiveness of distal synaptic inputs by adjusting its mor-
phological or electrotonic properties? The answer, perhaps surprisingly, is yes. Sup-
pose a cell is represented by a cylinder 1,000 pm long. If current is injected into one
end of the cylinder, can we choose electrotonic parameters to maximize the voltage
at the other end? Clearly, voltage could be maximized if R,, — oo or R, — 0, but
what if R,, and R, are fixed to finite and nonzero values? Then it turns out that volt-
age at the other end of the cylinder can be maximized for a particular choice of
diameter.

The reason that an optimal diameter exists is that the effectiveness of an mput will
depend on its amplitude at the input site and the voltage attenuation to the soma.
For a fixed length cable, if the diameter is large, then input resistance is low; an input
will produce a small voltage response that will attenuate very little down the cable. If
diameter is small, then input resistance is large; an input will produce a large voltage
response that will attenuate considerably down the cable. There is an optimal diame-
ter that will balance the competing forces of input resistance and attenuation on
the voltage response. For a constant current input, the optimal diameter should be
chosen to make the electrotonic length of the cable L ~ 3 (Holmes, 1989). Because
of reciprocity in a linear system, diameters that maximize the voltage at a distal tip
for current input at the soma will also maximize the voltage at the soma for current
input at the distal tip. If the input is a synaptic input, particularly a transient synaptic
input, the optimal diameter occurs for much smaller values of .. However, reciproc-
ity does not hold for synaptic inputs because of the nonlinear effect of the driving
force, and this means that diameters cannot be optimal for signaling in both direc-
tions. This analysis in a passive system suggests that it is possible that the morphol-
ogy of a cell may be optimized to maximize the effectiveness of synaptic inputs from
a given location having a particular time course (Mouchet and Yelnik, 2004; Ermi
et al., 2001). A similar analysis has been done recently regarding optimal diameters
for the placement of gap junctions (Nadim and Golowasch, 2006).
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Branching Effects on Current Flow and the “3/2 Rule”

While the 3/2 rule is useful for reducing complex trees to an equivalent cylinder, it is
less clear what use such a branching pattern might have in nature. It is tempting to
suggest that the 3/2 rule might provide optimal diameters to maximize the effective-
ness of certain inputs, but currently there is no evidence for this. One might ask if the
3/2 rule is the most efficient means to distribute voltage across branch points or won-
der what happens to voltage drops at branch points when diameters do not follow
this rule. Suppose diameters satisfy a different power rule at branch points. Suppose
the power p equals 1 (taper) or 2 (flare). What effect does this have?

If diameters satisty the 3/2 rule, there is impedance matching at branch points and
this will be lost if p # 3/2. The result is that voltage attenuation away from the soma
will change abruptly at branch points. If p = 1, voltage attenuation will be less steep
before the branch point than after it. If p = 2, voltage attenuation will be steeper be-
fore the branch point than after it. Such changes are difficult to see clearly in plots
(figure 10.2b) without larger deviations from the 3/2 rule, but they could have impli-
cations for how strongly somatic inputs are felt in proximal regions compared with
distal regions. Conversely, for an input at the tip of a distal branch, there will always
be an abrupt change in the rate of steady-state voltage attenuation at the branch
point (see figure 4 of Rall and Rinzel, 1973). Attenuation will always be more shal-
low proximal to the branch point as current flows from the distal branch into a
thicker proximal process and a sibling branch, but this attenuation between branch
points is steeper if p = 1 and more shallow il p = 2 compared with when p = 3/2,

The result of this is that the asymmetry in steady-state voltage attenuation from
a distal dendrite toward the soma compared with attenuation in the reverse direction
is increased when p =1 and reduced when p = 2 compared with the case where
p =3/2. Changes in attenuation are also accompanied by changes in input resis-
tance, with Ry increased when p = 1 and reduced when p = 2. Because of the com-
peting roles of input resistance and attenuation for determining optimal diameters, as
mentioned earlier, it is possible that differences in the value of p may reflect a differ-
ence in how inputs in different parts of the dendritic tree are weighted.

Dendritic Spines

Passive cable theory has several implications for the function of dendritic spines (see
Rall, 1974, 1978 and the review by Shepherd, 1996) and we will only mention two.
First, spines provide a particular case ol asymmelric voltage attenuation described
earlier. There may be considerable voltage attenuation from the spine head to the
dendrite if the spine stem resistance is large. However, there is virtually no voltage
attenuation in the reverse direction; any voltage change in the dendrite is felt in the
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spine. This fact ruled out an early hypothesis for spine function: that spines exist to
isolate inputs from each other electrically. Second, an input on a spine is less effective
than an identical input on the dendrite. Although this is true for passive models, it
may not be true if voltage-dependent conductances are activated in spines.

10.4  Estimating Electrotonic Parameters—Historical View

To make passive models of neurons, it is essential to have estimates for the values of
the electrotonic parameters as well as some representation for cell morphology. The
electrotonic parameter whose value is known with the most certainty is C,,. Cole
(1968) called C,, a biological constant with a value of approximately 1.0 pF/cm?
and although this value is often used, it may be an overestimate, as discussed earlier.
Axial resistivity, R,, has been difficult to measure, but at least we believe we have
good bounds for this parameter. However, values for R, and a suitable morphology
are more difficult to determine. Rall pioneered methods to estimate these parameters
with the equivalent-cylinder model and we briefly review these.

Use of Time Constants to Estimate Electrotonic Parameter Values

Rall (1969) showed that the voltage response following the termination of a brief or
sustained current input could be described mathematically as an infinite sum of expo-
nential terms:

VoG T e s (10.5)

If values for 7o and 7 can be estimated from a voltage transient by curve fitting or (in
those days) “exponential peeling,” then critical information about the cell can be
obtained. First, 7o, being the longest time constant, is equal to the membrane time
constant 7,,. Because 7, = R,,C,, we can estimate R, assuming that C,, is 1.0
pF/em?. Second, Rall showed that if the cell can be approximated as an equivalent
cylinder, then the electrotonic length of the cell can be estimated from the equation,
L =n/(to/t; — )2,

Although Rall derived several other formulas for L that involved use of the coeffi-
cients C; and voltage-clamp time constants, this particular formula was the most
widely used because the current clamp time constants were the easiest to obtain
with confidence. With estimates of R, and L, one could construct a simplified model
of a cell in which it was not essential to have precise lengths and diameters of neuron
processes as long as these values met the constraint of the estimated L value. Appli-
cation of the Rall formula has provided substantial insight into the electrotonic struc-
ture of numerous types of neurons in scores, if not hundreds, of studies through the
years (e.g., Nelson and Lux, 1970; Lux et al., 1970; Burke and ten Bruggencate,
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1971; T. H. Brown et al., 1981a,b; Johnston, 1981; Stafstrom et al., 1984; Fleshman
et al., 1988; Pongracz et al., 1991; Rapp et al., 1994; London et al., 1999).

What Do the Time Constants Represent?

In a cylinder, the time constant 7; represents an equalization of charge between the
soma end of the cylinder and the distal end. Subsequent time constants represent ad-
ditional harmonics of charge equalization between the two ends of the cylinder. It is
this charge equalization that makes voltage decay (and voltage charging) initially
faster in a cylinder than in an isopotential sphere, as mentioned briefly earlier. The
71 will be half the size of 7y for L ~ 3, one-tenth of 7y for L ~ 1, and one-hundredth
of 7y for L ~ 0.3, so charge equalization will modify the voltage transient in all but
the most electrotonically compact cells.

The advent of neuron reconstruction methods (chapter 8) has allowed modelers to
use actual cell morphology in models, but for morphologies different from those of
an equivalent cylinder, the time constants have a different meaning. In a compart-
mental model with N compartments, N time constants can be computed from the
eigenvalues of the compartmental model matrix (the matrix A in the representation
dV/dt = AV + B). It turns out that 7, represents charge equalization between the
longest tip-to-tip path in the neuron, 7, represents charge equalization between the
second longest tip-to-tip path, etc. These time constants are associated with odd
eigenfunctions (having odd or +/— symmetry with respect to the soma). Eventually
there is a time constant, Teven, associated with an even eigenfunction (even symmetry)
with respect to the soma that represents charge equalization between a proximal
membrane and a distal membrane. In a morphology represented by an equivalent
cylinder, the coefficients of the time constants associated with odd eigenfunctions
(11, 2, etc.) are all equal to zero and the first time constant that appears with a non-
zero coefficient after 7y is Teyen. However, if the morphology deviates from an equiv-
alent cylinder, then these other time constants will not have zero coefficients. In
neurons having terminations at different electrotonic lengths, such as pyramidal cells
(apical versus basilar dendrites), some of these cocfficients can be significant. The as-
sumption made when applying the Rall formula is that the fitted 7, (sometimes called
Tipeel) Will equal 7gyen, but this may not be the case if other time constants have sig-
nificantly nonzero coefficients because the fitted 7; will most likely reflect the average
of dozens of closely spaced time constants (W. R. Holmes et al., 1992).

Constructing Models from Morphology, 7y and Ry

Some labs began to apply the Rall methods after obtaining morphological and elec-
trophysiological data from the same cell (e.g., Clements and Redman, 1989; Flesh-
man et al., 1988; Nitzan et al., 1990). Standard estimates of C,, and R,, an estimate
of R, from the experimentally determined o, plus the reconstructed morphology
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should in theory provide all that is needed to construct passive models of these cells,
However, when this was done in practice, some discrepancies were quickly noted. In
particular, the input resistance, Ry, measured experimentally did not agree with the
input resistance value calculated with the model.

Three hypotheses were proposed to explain these discrepancies. First, perhaps the
standard values assumed for C,, and R, were not correct. However, the changes
required were too large for this possibility to be readily accepted. Second, perhaps
the electrotonic parameters, in particular R,,, were not uniform in the cell. Unfortu-
nately not enough information was available to distinguish among various R,, distri-
butions. Third, it is well known that membrane does not necessarily provide a tight
seal around intracellular electrodes, and perhaps an electrode shunt could cause an
artificially low 7. The data secemed to be most consistent with this third possibility.
This required estimation of an additional parameter, the soma shunt (Rose and
Dagum, 1988; Rose and Vanner, 1988; Clements and Redman, 1989; Pongracz
et al., 1991). Given that sharp electrodes introduce an artificial shunt at the soma, it
became clear that earlier estimates of L obtained with the Rall formula overesti-
mated the actual L by a factor of two in electrotonically compact cells and by 0—
20% in electrotonically long cells (Holmes and Rall, 1992a). Furthermore, estimation
of Cy,, R,, Ry, and the soma shunt cannot be done uniquely without accurate mor-
phological and electrophysiological information from the same cell (W. R, Holmes
and Rall, 1992b; Major et al., 1993a) and even then, it is possible to obtain several
sets of parameter values that appear to fit the data equally well (Rapp et al., 1994).

Whole-Cell Patch Recordings

The development of the whole-cell patch-clamp technique allows one to avoid intro-
ducing an artificial shunt into the cell, but this recording method is not without its
own issues. The technique may dialyze the cell, so it is important to have the appro-
priate medium composition in the electrode. In some of the early whole-cell patch
data, values of input resistance and associated estimates of R, and R, were 5-10
times larger than estimates obtained with sharp electrodes. The reasons for this were
that many of these recordings were done from immature neurons from young ani-
mals and the technique allowed more recordings from smaller cells to be success-
ful: however, the biggest problem appears to have been cell dialysis. The use of the
perforated-patch technique, along with better knowledge of what needs to go into the
patch electrode (Kay, 1992), has brought estimates of these parameters back down
substantially, although values remain higher than those obtained with intracellular
electrodes (Pongracz et al., 1991; Spruston and Johnston, 1992; Staley et al., 1992).
The use of whole-cell patch recordings has brought to light a fourth explanation of
the discrepancies noted earlier that was known but largely ignored at the time—the
accuracy of the morphological reconstructions. This is discussed further later.



Passive Cable Modeling 249

10.5 Estimating Electrotonic Parameters—Recent Approaches

Recent efforts to estimate passive electrotonic parameters use whole-cell patch or
perforated-patch recordings combined with morphological reconstructions from the
same cell. A sample of these efforts for seven different cell types is discussed here.
Patch recordings eliminate the soma shunt problem and this, together with complete
morphological information from the same cell, removes a major source of non-
uniqueness of parameter value estimates. After the experience with soma shunt
caused by sharp electrodes, particular concern has been devoted to minimizing tech-
nical problems during experiments, such as those caused by electrode resistance and
capacitance, and these are discussed at length in Major et al. (1994) and Roth and
Hausser (2001).

The types of recordings that have been used in recent analyses are the response at
the soma to a brief pulse of current (Thurbon et al., 1998; Roth and Hausser, 2001;
Major et al., 1994; Trevelyan and Jack, 2002), short and long hyperpolarizing cur-
rent pulses (Stuart and Spruston, 1998; Golding et al., 2005), or just long hyperpola-
rizing pulses (Chitwood et al., 1999). Brief pulses are presumed to be too brief to
activate voltage-dependent conductances, leaving only a passive response for analy-
sis. Responses to long hyperpolarizing pulses are typically done with H-channel
blockers to linearize responses as necessary.

The morphological reconstructions were used to construct models and then pa-
rameter values for R,, R,, and C,, were fit in the models to match the voltage
responses. Roth and Hausser (2001), Stuart and Spruston (1998), Golding et al.
(2005) and Chitwood et al. (1998) used the multiple-run fitter in NEURON to do
their fits, while other groups used direct fits with standard optimization methods.
Three groups (Stuart and Spruston, 1998; Roth and Hausser, 2001; Golding et al.,
2005) were able to record simultaneously from dendrites and the soma. Having
recordings from multiple locations in the cell is exceptionally useful for fitting R,
and for determining whether R, is uniform. Stuart and Spruston (1998) and Golding
et al. (2005) could not find good fits to both dendritic and somatic recordings when
R,, was assumed to be uniform; the fitted model responses decayed too slowly in the
dendrite and too quickly at the soma. Much better fits were obtained by assuming
R,, was lower in distal than in proximal regions.

Estimated parameter values from seven studies are given in table 10.1. The param-
eter values show some variability, but on average the C,, and R, values are in line
with those mentioned at the beginning of this chapter that were directly measured
or calculated. The heterogeneity may reflect actual differences among cell types, dif-
ferences in recording methods, problems with morphological reconstructions, or (ex-
cept for the spinal cord study) uncertainty about appropriate compensation for
dendritic spines.
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Table 10.1
Passive electrotonic parameter value estimates from recent studies of seven different cell types
GH RH Riil
Study Cell type (uFfem?) (Q-cm) (kQ - cm?)
Trevelyan and Jack (2002)  Layer 2/3 cortical pyramidal ~ 0.78-0.94 140-170 Soma shunt
(37)
Thurbon et al. (1998) Spinal cord cells 24405 87 + 22 53409
Roth and Hausser (2001) Cerebellar Purkinje cells 0.77 £ 0.17 115+ 20 122 + 18
Stuart and Spruston (1998)  Layer 5 cortical pyramidal 1.1-1.5 70--100 35—=5
cells nonuniform
Major et al. (1994) CA3 pyramidal cells 0.7-0.8 170-340 120-200
Golding et al. (2005) CA1 pyramidal cells 1-2 139-218 87 — 20
nonuniform
Chitwood et al. (1999) Hippocampal interneurons 09+03 Not available 61.9 +34.2

Parameter value ranges or means 4+ SD are given.

10.6  Considerations for Constructing Passive Cable Models

When one develops a passive cable model to study a specific phenomenon, there are
several steps one should take and there are many places where one can go wrong. In
this and the following section we discuss some of the issues, make some recommen-
dations, and discuss some potential pitfalls. Much of what we will say is also relevant
for models that include active membrane conductances that are discussed in the next
chapter.

Choosing a Morphology

One of the first issues to be resolved is what to use to represent the morphology of a
cell. Earlier we discussed the equivalent-cylinder model, but some of its key assump-
tions—that dendrites all end at the same electrotonic distance and that diameters at
branch points satisfy the 3/2 rule—are often violated. A reduced model with a sim-
plified morphology that better captures the essential morphological characteristics of
a cell could be useful for network models where computation time is an issue. One
such simplification is to reduce the dendritic tree into an unbranched “equivalent ca-
ble” with variable diameter (Clements and Redman, 1989; Fleshman et al., 1988).
Dendrites from a morphological reconstruction are divided into small segments hav-
ing an equal electrotonic length, AX (or equivalently, for fixed R, and R,, equal
f/a”/z). Then the diameter of the equivalent cable, d.q, at electrotonic distance
X (X = Z;;l AX) is determined from the diameters of all dendrites present at
that distance by deq(X)) = [>_; dj(/Yj):S/ 2]2/ ?. This “equivalent cable” has aApproxi-
mately the same membrane area, input resistance, and time constant 7, as the fully
branched structure, but the voltage transients are not identical (Rall et al., 1992).
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The equivalent-cable model has been used to quickly estimate electrotonic parameter
values from transients (Clements and Redman, 1989) and to collapse those parts of
the dendritic tree not of interest for the question being modeled (Burke et al., 1994).
It also provides a means to collapse subtrees in cells with more complicated struc-
tures for more efficient computation (Stratford et al., 1989).

With simplifications such as these, a cell may be represented with 10-40 compart-
ments. However, if a simplified morphology is truly sufficient, then why has nature
made dendritic trees so complicated? In recent years, a number of studies have shown
that morphology plays an important role in the computations done by a cell
(Hausser and Mel, 2003; Krichnar et al., 2002; Schaefer et al., 2003b; van Ooyen et
al., 2002). With the advent of more powerful computers, computation time is not a
major issue for models with detailed morphology, particularly passive models.

Detailed morphological reconstructions are becoming more and more available for
a variety of cell types in public databases. The effort of anatomists to produce these
data and to make them readily available is very much appreciated by the modeling
community. Data that were maintained on web sites of individual labs are now being
gathered more centrally. For example, http://neuromorpho.org, an archive main-
tained by G. A. Ascoli (2006), has collected reconstruction data for over a thousand
cells from fifteen different laboratories. Much of this reconstruction data can be
saved in NEURON and GENESIS formats. These morphological reconstructions
provide an appropriate anatomical structure for the cell type without making any
simplifying assumptions about morphology and should be used whenever possible.

Selecting Electrophysiological Data for Estimating Electrotonic Parameter Values

It is not enough to take a morphological reconstruction and use standard or typical
values for the electrotonic parameters R,,, R,, and C, in a model. Values for these
parameters must be fit to electrophysiological data so that the model not only has a
representative morphological structure, but also produces representative electrophy-
siological responses. Ideally, one would like to have morphological and electro-
physiological data from the same cell (and this is essential if the goal is to estimate
actual values for electrotonic parameters, as discussed in the previous section), but
these data are available in only a few labs, and morphology databases typically
have no recordings from the reconstructed cells. There is a great need in the model-
ing community for a public database containing actual electrophysiological record-
ings with a number of repeated trials, even if the detailed morphology of such cells
is not known.

Assuming electrophysiological data can be obtained, what type of data would be
most useful for parameter fitting? Because we are discussing passive models, we first
of all want our data to be free of the influence of voltage-dependent conductances.
Brief current pulses are often used because they should not activate voltage-
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Figure 10.3

Experimental recordings in response to hyperpolarizing current pulses. Response to short (upper traces)
and long (lower traces) hyperpolarizing current pulses from hippocampal CA1 pyramidal cells. (a) Cell in
normal artificial cerebrospinal fluid (ACSF). (b) Cell with the H-channel blocker ZD-7288. The cell in
ACSF shows the characteristic voltage sag in response to a long-duration current injection. The sag is elim-
inated in the other cell where the H-current is blocked.

dependent conductances. Weak hyperpolarizing and depolarizing current pulses
can be used, and if we are fortunate, voltage changes with these currents will scale
linearly with current amplitude. If not, then some cocktail of blockers of voltage-
dependent conductances will have to be used. The voltage responses to short and
long —50-pA current pulses injected into a CA1 hippocampal pyramidal cell are
shown in figure 10.3a. The response shows the characteristic voltage sag seen in these
cells that results from activation of the hyperpolarization-activated current, f;,. This
current is blocked in another CAl pyramidal cell by bath application of the H-
channel blocker ZD-7288, as shown in figure 10.3b. The sag is gone and the voltage
response is purely passive.

Second, we want to have voltage traces that provide sufficient information to esti-
mate the electrotonic parameters. A long hyperpolarizing pulse will provide informa-
tion about R, and R,, as well as input resistance, and the time course will provide
information about R, and C,,. A short hyperpolarizing pulse will provide informa-
tion primarily about R, and C,, so both short and long current pulses should be
used. In a passive system, it is not very useful to have data with current pulses of dif-
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ferent amplitudes and the same duration except to check that the system is indeed
linear and to catch possible problems caused by experimental noise, because no new
information will be obtained. Recordings at sites different from the soma can provide
useful information, particularly if the sites of the inputs are known and the morphol-
ogy and electrophysiology come from the same cell, as noted earlier (Stuart and
Spruston, 1998; Golding et al., 2005; Roth and Hausser, 2001). Other types of data,
such as more complicated waveforms, direct current field stimulation (Svirskis et al.,
2001), or impedance functions (Maltenfort and Hamm, 2004) may also be useful.

Compensation for Dendritic Spines

Many neuron types receive synaptic inputs on dendritic spines. A neuron can have
many thousands of dendritic spines whose combined membrane area can be half the
total membrane area of the cell. It is tedious to model every single spine explicitly
and more tedious and generally not practical to measure spine dimensions for every
spine on a cell (but see White and Rock, 1980). However, if one merely assigns stan-
dard values for R, C,, and R, to a morphological model without including spines
or otherwise compensating for them, then the model will not provide an appropriate
electrotonic structure. Input resistance will be overestimated and the results will not
be representative.

There are two methods used in models to compensate for dendritic spines. The first
is to increase C,, and reduce R, according to total membrane area with spines
included compared with total membrane area without spines (W. R. Holmes, 1989).
For example, if the inclusion of spines on a dendritic segment increases total mem-
brane area by 33%, then these spines can be included implicitly by multiplying C,,
by 1.33 and dividing R,, by 1.33. Because spine density may not be the same in dif-
ferent parts of the cell, it is necessary to determine spine area and change R,, and C,,
separately for each dendrite. A second method is to keep R,, and C,, the same on
each dendrite, but increase the length and diameter of the dendrite to account for
the extra membrane contributed by spines, but in such a way as to keep intracellular
resistance (equivalently, length divided by diameter squared) the same (Stratford
et al., 1989). In the earlier example where spines increase total membrane area by
33%, we let F = 1.33 and then multiply length by F2/3 and diameter by F'/3. It is
quite simple to implement either of these two methods in simulation scripts.

These two methods for including spines work identically in passive models, but
have very different implications for models with voltage-dependent conductances in
dendrites. The first method, where R,, and C,, are changed, compensates for spines
with passive membranes, whereas the second method, where length and diameter
are changed, assumes that spines have the same densities of voltage-dependent con-
ductances as the dendrite. The process of collapsing spines that are not passive and
do not have the same voltage-dependent properties as the dendrite to which they
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Local minima and sensitivity issues during the parameter search. Example using NEURON’s multiple-run
fitter. The “neuron’ has a simple Y-branched apical dendrite, a basilar dendrite, and an axon (all passive).
Spines were included on apical dendrites. The “experimental data™ were generated with R, = 12,000
Qcm?, R, = 160 Qem, and C,, = 1.0 pl:/cm2 for all compartments. The fitter converged to these values
with error 9e-10. However, with different starting values, there was convergence to a local minimum with
parameter values that gave a very good-looking fit (fit and target traces overlap; parameter values and er-
ror shown in the figure). R,,. R,, G, combinations of (15,629, 53.296, 0.65739) or (14,811, 72.23, 0.72814)
have low error and provide good fits visually, but were not considered final solutions by the fitter. The files
to run this example are available on the book website at http://www.compneuro.org.
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are attached is relatively straightforward, but requires that one be careful in the
implementation.

Estimation of Electrotonic Parameter Values

After choosing a morphology for the model, selecting electrophysiological data and
arranging to compensate for spines, if necessary, the next step is to fit electrotonic
parameter values to make the model responses match the data. There are several
ways this can be done. One method that we have found particularly useful, and
which has been used by several groups, as noted earlier, is the multiple-run fitter
available in the NEURON simulator (figure 10.4). NEURON uses the principal
axis method (PRAXIS), a variant of the conjugate gradient method developed by
Brent (1976), by default; see Shen et al. (1999). Chapter 2 discusses other parameter
search methods that can be added to the NEURON multiple-run fitter or else used
independently.

10.7 Problems, Pitfalls, and Recommendations

Problems with Morphological Reconstruction Data

The use of morphological reconstructions for modeling studies is recommended be-
cause a fixed and accurate morphology greatly reduces the number of degrees of free-
dom for the model. However, despite the enormous effort that is put into doing a
morphological reconstruction and the improvements in reconstruction methodology
through the years, the fact remains that precise morphological measurements are dif-
ficult to obtain (see chapter 8). Process diameters in particular are very difficult to
measure accurately because many diameters are near the limit of resolution of the
light microscope. Diameter measurements given in databases rarely have more than
one digit of precision. Other potential problems are tissue shrinkage, artificial com-
pression of tissue, and the difficulty of reconstructing lengths accurately in the z-axis
direction as processes are followed from one plane of focus to another. Recent stud-
ies have analyzed reconstructions of the same cell type compiled by different labs
(Ambros-Ingerson and Holmes, 2005; Scorcioni et al., 2004; Szilagy and De Schut-
ter, 2004) and have found that morphological parameters such as total dendritic
length, membrane area, and volume were similar among cells reconstructed in the
same lab but were very different among different labs. This variability in measure-
ments among labs is unlikely to be explained by differences in animal strain or age.
The variability in reconstructed measurements has consequences for estimates of
electrotonic parameters. Recall that R,, is the membrane resistivity of a unit area
of membrane in units of ohms times square centimeter, C,, is membrane capacitance
per unit of area in units of microfaradays per square centimeter, and R, is axial
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resistivity through a unit cross-sectional area per unit of length in units of ohms times
centimeter. Consequently, if the reconstruction diameters are uniformly off by a
factor of x, then the fitting procedure will return estimates of Ry, Cpy, and R, equal
to the actual R,, multiplied by x, the actual Cy divided by x, and the actual R, multi-
plied by x2. If reconstruction lengths are uniformly off by a factor ¥, then the fit-
ting procedure will return estimates of Ry, Cp, and R, equal to the actual Ry
multiplied by y, the actual C,, divided by y, and the actual R, divided bv y. R,
estimates are particularly vulnerable to error because of the x? dependence of
its estimate on diameter and the fact that diameter is difficult to measure precisely.
Despite the consequences of reconstruction errors for the electrotonic parameter esti-
mates, reconstructed morphologies should still be used in the models. They provide a
characteristic anatomical structure of the cell type being studied, and issues with
reconstructions can be overcome with parameter fitting, as discussed next.

It Is Essential to Fit Parameter Values with Data

If one blindly uses standard values for Rin, Cy, and R, in models based on recon-
struction data, the results may not be representative for the cell type being studied.
Even if the morphological data and the electrophysiological data come from the
same cell and the morphological reconstruction is perfect, parameter estimation is
still necessary for two reasons. First, although we know ranges of values for the elec-
trotonic parameters, the “standard” values are not known precisely enough that one
can confidently say that a model with such values will produce representative results,
Second, even if the dendrites are reconstructed perfectly, it is unlikely that the num-
ber of dendritic spines or the total spine area is known with much precision. Param-
eter fitting will still be needed to account for dendritic spines.

Some models may be based on morphological data obtained from a database and
electrophysiological data obtained from a different cell. The assumption is that the
morphology chosen is typical and provides an appropriate structure for the cell and
that the electrophysiological data are also typical. Here parameter fitting is necessary
to compensate for (1) reconstruction issues, (2) an unknown number of spines, and
(3) the fact that the two types of data come from different cells. Parameter fitting
can make the morphological cell model electrotonically equivalent to the experimen-
tal cell (W. R. Holmes et al., 2006). Clearly, there is heterogeneity among cell types,
and the morphology and cell responses of the reconstructed cell and the experi-
mental cell may in fact be different. However, the morphological reconstruction pro-
vides a basic anatomical structure that is common for the cell type, and with fitted
electrotonic parameter values, a model based on this reconstruction will provide
representative responses for that cell type. This is really what we want even though
the actual electrotonic parameter values in the model may not be typical or standard
values.
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Local Minima, Uniqueness, and Sensitivity Problems

Issues associated with parameter fitting are discussed in detail in chapter 2. It is not
clear how often the problem of local minima appears when fitting passive models,
but in our experience this has not been much of an issue when there are suitable
bounds on the parameter space. In the very few cases where we have seen conver-
gence to multiple solutions, the fitting error has clearly indicated the better solution.
However, finding local minima in the simple example in figure 10.4 proved to be
much easier than with real data. For example, with starting values of 100, 1,200,
and 1 for R,, R, and C,, the method converges to R, = 1720.3, R,,, = 52254, and
C,, = 2.3898. The model with these parameter values appears to overlap the “exper-
imental” traces visually, as shown in figure 10.4. The error is very small, although it
is orders of magnitude larger than the error with the “true” values. In situations like
this, it is helpful to set physiological bounds on parameter values, but even then the
method may sometimes get stuck on one of the bounds. It is advisable to try several
different starting value combinations. The issue of nonuniqueness of parameter fits is
discussed in chapter 12, section 3. For passive models, the fitting procedure described
typically assumes that Ry, Rg, and C,, are uniform, but this does not have to be the
case. It is likely that equally good (or better—Stuart and Spruston, 1998; Golding et
al., 2005) solutions can be obtained if this assumption is relaxed and some functional
form is used to describe how the values of these parameters change with distance
from the soma. If these parameters are uniform, morphology provides a significant
constraint limiting nonuniqueness. For example, in the equivalent-cylinder model
values of L, Ry, and t do not fix R, Ry, and Gy, uniquely unless length and diame-
ter are also specified. For more complex models, morphology plus experimental volt-
age traces appear to fix uniform Ry, Rq, and C,, values uniquely, but this has not
been proven.

A larger problem is sensitivity. When the example in figure 10.4 is run, solutions
that do not look bad visually appear long before convergence. If the fitter is stopped
before convergence at one of these not-so-bad solutions, the parameter values may
be significantly different from the “true” or final values. Experimental data contain
noise, and there is no guarantee that noise will not cause very different parameter
values to appear as the final solution (Major et al., 1994). If noise is truly random,
then use of multiple sets of experimental data with different protocols might mini-
mize this problem.

Recommendations for Modeling

Ideally one should try to get a morphological reconstruction and electrophysiological
data from the same cell. Failing that, morphology can be obtained from a public
database and electrophysiological data for the same cell type can be obtained
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separately, but these two types of data should be matched for the same strain of
animal at the same age. Passive electrotonic parameters in the model should be fit
to match multiple voltage traces from the experimental cell, to make the modeled
cell electrotonically similar to the experimental cell. Blind use of standard values
for electrotonic parameters is not likely to yield representative results. Because of
heterogeneity within a cell type in both morphological reconstructions and electro-
physiological data, modeling studies should use multiple morphologies and multiple
sets of experimental data; results generated from just one cell morphology and one
set of experimental data should not be considered robust.
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